Чтение онлайн

ЖАНРЫ

Полный справочник медицинской аппаратуры
Шрифт:

Наборы иммунохимических реагентов для определения антигенов называются диагностикумами. Для их создания необходимо решить задачи получения антигена, антитела, комплекса антигена или антитела с ферментом, наладить регистрацию иммунохимиче-ской реакции по активности фермента, использованного в качестве метки. Кроме ферментов, в качестве меток для антигенов используют радиоактивные и флуоресцирующие соединения, такие реакции соответственно называются радиоиммунным и флуорес-центноиммунным анализом (РИА и ФИА). Предпочтением пользуется ИФА, поскольку он не требует сложной измерительной аппаратуры и применения радиоактивных соединений.

Иммунохимический анализ не ограничивается ИФА, РИА и ФИА, которые основаны на прямом взаимодействии антигена с антителом. Имеются другие методы обнаружения и количественного определения антигенов в зависимости от их физического состояния

при взаимодействии с антителами. Если антиген расположен на поверхности клеток, то антитела вызовут слипание (агглютинацию) таких клеток. Этот принцип лежит в основе определения групп крови: склеивание эритроцитов при взаимодействии поверхностных антигенов с добавленными антителами – гемагглютинация. Антитела при добавлении в определенном соотношении к раствору макромолекулярных антигенов вызывают их преципитацию – образование крупных, визуально обнаруживаемых агрегатов из молекул антигена, связанных антителами. Во время проведения реакции преципитации в гелях возникают линии преципитации при образовании иммунных комплексов антиген-антитело, по форме этих линий можно судить о числе и иммунологическом родстве антигенов. Для идентификации белков широко применяется методика иммуноблоттинга: сначала смесь белков разделяют с помощью электрофореза в геле, затем на гель накладывают нитроцеллюлозную мембрану и на нее электрофо-ретически переносят (подвергают электроблоттингу) разделенные белки, которые идентифицируют посредством меченых антител. Меченые антитела широко используют в исследовании локализации компонентов клеток и тканей – это методы имму-ноцито– и иммуногистохимии. Клетки, меченные флуоресцирующими антителами, можно отделить от немеченых клеток – метод проточной цитофлуориметрии. Хроматографические колонки с сорбентом, с которым ковалентно связан антиген (или антитело), используются в аффинной хроматографии – отделении соответствующего антитела (или антигена) из смесей в результате образования иммунных комплексов. Еще одно применение иммунохи-мического анализа – иммуносенсоры: пьезокристалл, покрытый антигеном (антителом), в результате связывания антител (антигена) увеличивает свою массу и меняет частоту резонансных колебаний в переменном электрическом поле, что позволяет регистрировать изменение массы пьезоэлектрика порядка 10–12 г.

Таким образом, ИФА – это лишь один из способов определения антигенов, получивший широкое практическое распространение благодаря возможности количественных определений, высокой чувствительности и коммерческой доступности. В научно-исследовательской работе эти возможности иммунохимических методов всегда используются вместе с ИФА и даже с применением одних и тех же реагентов.

Возможности увеличения чувствительности ИФА ограничиваются фоном анализируемого соединения (т. е. его наличием не только в анализируемом образце, но и в используемых реактивах и растворителях), субстратной специфичностью фермента и аффинностью антител. К ограничениям ИФА относится также наличие в тестируемых образцах кофакторов, ингибиторов и стимуляторов активности ферментов. Еще один недостаток – ИФА не позволяет различать нативные белки и их биологически неактивные фрагменты, сохранившие антигенные детерминанты. Помехой для ИФА может быть изменение каталитической активности фермента при его конъюгировании с антигеном. Ограничением ИФА является его применимость лишь к хорошо изученным системам, где есть очищенные антигены и высокоспецифические антитела.

Высокая чувствительность в сочетании с быстротой анализа (от нескольких минут до нескольких часов), возможностью одновременного тестирования большого количества образцов и отсутствием особой необходимости предварительных операций по очистке и концентрированию анализируемого соединения в образце придают ИФА неоспоримые преимущества перед другими аналитическими методами. Поэтому сегодня ИФА находит широкое применение не только в здравоохранении, но и в различных областях сельского хозяйства, промышленной биотехнологии, природоохранной деятельности и научно-исследовательской работе.

Любое заболевание человека и животных можно быстро и точно диагностировать путем идентификации возбудителя, его отдельных антигенных компонентов, антител к этим компонентам или веществ, не свойственных здоровому организму и синтезируемых при его патологических состояниях (рак, сердечно-сосудистые и эндокринные заболевания). Диспансеризация населения, эпидемиологические обследования, выявление отравлений, наличия наркотиков в крови, определение содержания лекарственных соединений в тканях, вирусных заболеваний растений, определение антибиотиков, витаминов и других биологически активных

соединений при отборе активных штаммов-продуцентов в промышленной биотехнологии, контроль за качеством медицинских препаратов из донорской крови на отсутствие вирусов-возбудителей СПИДа и гепатита В – это лишь небольшой перечень практического применения ИФА. Современные фундаментальные исследования в биохимии, клеточной физиологии и иммунологии, микробиологии, вирусологии, онкологии трудно представить без ИФА. Реагенты для проведения ИФА сегодня стали коммерческими продуктами и могут быть приобретены по каталогам известных фирм.

Автоматизированные ИФА-анализаторы представляют собой модульную систему и состоят из автоматического дозатора образцов, сканера штрих-кода пробирок, промывочного блока, инкубатора, устройства для считывания оптической плотности частиц, блока для обработки результатов, представленного, как правило, персональным компьютером с соответствующим программным обеспечением.

Дозатор образцов используется для раскапывания образцов из пробирок на любые форматы исследуемых носителей – микропланшеты, пробирки, специальные картриджи, а также дозирования реактивов.

Образцы могут находиться в пробирках различных размеров и диаметров в зависимости от конструкции прибора. Многие ИФА-анализаторы оснащены датчиком детекции уровня жидкости образцов и реактивов и наличия сгустков, учитывая это, они могут использовать первичные пробирки с осажденным (но не удаленным) сгустком и эритромассой.

Процесс дозирования образцов и реактивов строится обычно таким образом, что они дозируются за один проход в несколько планшетов (рабочий стол вмещает одновременно от 1 до 5 планшет и от 2 до 14 реактивов). Например, если образцы исследуются на ВИЧ, гепатиты В и С, то за один проход они дозируются во все три планшета. В сочетании с использованием до 12 наконечников такая технология обеспечивает скорость дозирования 96 образцов (вместе с чтением штрих-кода) и реактивов на 4 планшета (ВИЧ, гепатит В и С, сифилис) в среднем за 15–20 мин.

Встроенный сканер штрих-кода пробирок обеспечивает идентификацию образцов, что является основой последующей автоматизации обработки информации. Вместе со сканерами штрих-кода микропланшетов и реактивов это обеспечивает:

1) автоматическую идентификацию образцов и реактивов, устраняет возможные ошибки регистрации и загрузки реактивов;

2) автоматизирует процесс последующей обработки информации и выдачи результатов по конкретному образцу;

3) позволяет контролировать и регистрировать процесс обработки каждого образца (и соответственно лунки планшета), обеспечивая надежность результатов.

Модуль промывки (вошер) оснащен многоканальной промывочной головкой с функцией детекции уровня жидкости в лунках при промывке, что обеспечивает дополнительный контроль за качеством промывки и предотвращает возникновение ложных результатов.

Качество промывки обеспечивает отсутствие кросс-контаминации, а многократное применение наконечников позволяет резко снижать себестоимость исследования. При этом сохраняется возможность в особо критических приложениях использовать наконечники в качестве одноразовых.

Затем микропланшеты с дозированными образцами и реактивами переносятся в инкубатор. Инкубация планшетов осуществляется в ячейках инкубации с индивидуально контролируемой температурой, конструкция которых обеспечивает отсутствие испарения реакционной смеси во время инкубации.

Считывание результата выполняется с помощью многоканального фотометра в моно– или бихроматическом режимах. Фотометр оснащается несколькими светофильтрами, работающими в диапазоне длин волн 340–850 нм.

Полученные данные оптической плотности обрабатываются на ПК врача-лаборанта с помощью программ в соответствии с методикой интерпретации результатов, изложенной в инструкции к используемым тест-системам. Полученные после интерпретации данные сохраняются в базе данных ПК, распечатываются в требуемом формате отчетности (настраивается пользователем) и передаются в информационную сеть лаборатории.

Производительность, помимо конструктивных особенностей комплекса, определяется также используемыми тест-системами и их сочетанием, конфигурацией комплекса, длительностью работы оборудования и потому является достаточно индивидуальным параметром.

Аппараты экстракорпорального оплодотворения (ЭКО)

Экстракорпоральное оплодотворение (ЭКО) – это оплодотворение вне организма с последующим переносом развивающейся оплодотворенной яйцеклетки (эмбриона) в полость матки. Основными показаниями к процедуре ЭКО являются:

Поделиться с друзьями: