Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Шрифт:
Наблюдение спектра характеристического рентгеновского излучения было и остается классическим методом идентификации химических элементов. В опытах ок-риджской группы рентгеновские лучи, характерные для 103-го элемента, регистрировались спустя одну-две секунды после вылета из ядер 260105 альфа-частиц с энергией около 9,1 Мэ В.
Сейчас известны радиоактивные свойства пяти изотопов элемента № 105, их массовые числа от 257 до 262, исключая 259. Наиболее долгоживущим оказался изотоп 262105, его период полураспада 40 секунд, у остальных — от одной до пяти. Поистине замечателен тот факт, что все изотопы 105-го наряду с альфа-распадом испытывают и спонтанное деление. Изотоп с массовым числом 262 распадается этим способом в 60 случаях из 100, для других изотопов 105-го
Благоприятные для исследований радиоактивные свойства изотопа 262105 позволили более детально изучить процесс деления его ядер. Уже давно известно, что массы осколков деления крайне редко бывают равными, чаще же соотношение их масс — примерно 2:3. Почему ядру выгоднее делиться так, а не иначе, каков механизм возникновения этой асимметрии масс?
Три изотопа — фермий-258, фермий-259 и менделевий- 259, делящиеся симметрично, позволяли предположить, что и последующие тяжелые изотопы, склонные к спонтанному делению, будут делиться симметрично, опровергая старое — 2 : 3 — правило. Но нет: опыты, проведенные в Ок-Ридже, показали, что ядра 262105 придерживаются «старых правил», делятся асимметрично. Видимо, область около 258Fm — лишь экзотический островок симметрии в море несимметрии. Это обстоятельство имеет важное значение для развития теории деления ядер. А изотоп 262105, таким образом, оказался самым тяжелым ядром, о спонтанном делении которого известно нечто большее, чем просто вероятность этого процесса.
Отметим, наконец, что изотопы 257105 и 258105, будучи дочерними продуктами ядер 107-го элемента (261107 и 262107), сыграли важную роль в экспериментах по синтезу и идентификации элемента № 107.
Первооткрыватели элемента № 105 предложили назвать его нильсборием — в честь Нильса Бора, выдающегося физика XX в., неизменно стремившегося поставить науку на службу миру и прогрессу.
Международный союз теоретической и прикладной химии (ИЮПАК) это название пока не утвердил, как, впрочем, и название «ганий», предложенное американскими физиками. В приоритетном конфликте наших и американских ученых по поводу открытия элементов № 102–105 до сих пор все еще нет компетентного и независимого третейского судьи. Вопрос об окончательном и справедливом наименовании самых тяжелых химических элементов пока остается нерешенным.
Экавольфрам
(106-й — пока безымянный)
В 1974 г. число химических элементов, известных человечеству, увеличилось еще на единицу. Их стало 106.
Между открытиями 104-го и 105-го элементов прошло шесть лет, между 105-м и 106-м — четыре года, и были основания считать, что скоро появится очередной новый элемент. Причины этих оптимистических надежд будут объяснены чуть позже. Здесь же укажем лишь на одну из них, самую главную: появился новый подход к проблемам ядерного синтеза, новый метод — тот самый, с помощью которого открыт элемент № 106.
106-й — не итог, 106-й — следствие. Поэтому воздержимся от восторженных криков типа «найден еще один элементарный кирпичик мироздания», и «ура первооткрывателям».
Попробуем разобраться, почему так трудно дается каждый очередной шаг в далекую трансурановую область и каковы истоки нынешнего сдержанного оптимизма физиков.
Summary
Почти каждая научная статья, написанная на английском языке, начинается с этого слова. Иногда оно не пишется — подразумевается, тогда на помощь приходят типографские шрифты. Иным шрифтом, не тем, которым печатается статья в целом, выделяют это самое summary — резюме, итог, краткую сводку наиглавнейшего.
Для элемента № 106 summary, вероятно, должно бы выглядеть так:
«В 1974 г. появились сообщения о синтезе изотопов 106-го элемента с массовыми числами 259 и 263. Первый из них получен в ядерной реакции нового типа при слиянии ядер свинца и хрома с последующим испусканием всего двух
или трех нейтронов. Этот изотоп наряду с альфа-распадом испытывает спонтанное деление с периодом полураспада около 7 миллисекунд.Второй изотоп получен в классической реакции на тяжелой мишени (калифорний), бомбардировавшейся ионами кислорода-18. Период полураспада этого изотопа 0,9±0,2 секунды, энергия альфа-излучения 9,06± ±0,04 Мэв».
По приведенным характеристикам нетрудно догадаться, где какой изотоп получен. Регистрация новых ядер по спонтанному делению — метод и прерогатива Лаборатории ядерных реакций в Дубне; регистрация по альфа-излучению и дочерним продуктам — метод и критерий открытия для Лоуренсовской лаборатории в Беркли. (Впрочем, к работе по синтезу элемента № 106 в США были привлечены специалисты еще одной лаборатории, тоже носящей имя изобретателя циклотрона Э. Лоуренса и тоже расположенной в штате Калифорния, но в другом городе — Ливерморе.) Первое сообщение об американской работе датировано сентябрем 1974 г.
Нетрадиционный путь
Во всех предыдущих синтезах новых химических элементов мишени готовились из урана, плутония, других трансурановых элементов. Старались выбрать мишень потяжелее, «снаряд» полегче, и в этом была логика. Чем больше энергии привнесет в составное ядро налетающая/ частица, тем труднее ему не развалиться, остаться новым идентифицируемым ядром. В идеальном для ядерного синтеза случае ядро остывает, выбрасывая только нейтроны, — только тогда находят новые элементы. Обычно составное ядро испускает 4–5 нейтронов, и каждый из них уносит в среднем 10 Мэ В. Однако 106-й элемент впервые получили, бомбардируя сравнительно легкую свинцовую мишень ускоренными ионами хрома:
Что же, выходит, что энергия возбуждения в этой реакции в 2–2,5 раза меньше обычного? Вовсе нет. Просто ядра свинца — «магические» ядра. Как есть замкнутые электронные оболочки — причина высшей химической стойкости благородных газов, так существуют и замкнутые нуклонные оболочки, как протонные, так и нейтронные. У изотопов свинца протонные оболочки заполнены целиком, и потому их ядра представляют собой как бы упроченную конструкцию. Оттого и получалось, что ядру-снаряду приходилось затрачивать слишком много энергии на вторжение в «магическое» ядро, и энергия возбуждения «ядерных сплавов» на свинцовой основе меньше, чем обычно.
Эту идею впервые высказал доктор физико-математических наук профессор Юрий Цолакович Оганесян, а возглавляемая им группа экспериментаторов блестяще подтвердила ее, получив первые ядра элемента № 106. Первая статья о синтезе в Дубне изотопа 259106 датирована
11 июля 1974 года. К тому времени было зарегистрировано более 60 спонтанно делящихся ядер с периодом полураспада около 0,007 секунды.
Аргументы физиков
Почему были уверены, что эти ядра — новые? Во-первых, потому, что ни одно из известных прежде спонтанно делящихся ядер не имело подобных характеристик. Во-вторых, потому, что изменение условий реакции — замена изотопа свинца в качестве мишени или изотопа хрома (бомбардирующего снаряда) — исключало наблюдавшийся эффект. Никто, конечно, не считал напрямую — это невозможно, — сколько протонов содержится в новых ядрах. В экспериментах регистрировали лишь осколки спонтанно делившихся ядер. Однако оснований полагать, что эти осколки чуть раньше составляли ядра 106-го элемента, было более чем достаточно.
Для синтеза и «ловли» осколков сконструировали специальную установку. Она достаточно проста: вращающийся с постоянной скоростью полый цилиндр, покрытый снаружи тонким слоем моноизотопного свинца. На эту мишень и направляют под определенным углом пучок ускоренных в циклотроне ионов хрома. За то время, какое «живет» ядро 106-го элемента, участок мишени успевает выйти из-под ионного пучка, и осколки летят на слюдяные детекторы спонтанного деления, которыми окружена мишень. Потом следы осколков дополнительно протравливают и но числу треков на разных детекторах определяют период полураспада…