Чтение онлайн

ЖАНРЫ

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Шрифт:

ДЕШЕВЛЕ ПЛАТИНЫ, ДОРОЖЕ СЕРЕБРА. Замена платины танталом, как правило, весьма выгодна — он дешевле ее в несколько раз. Тем не менее дешевым тантал не назовешь. Относительная дороговизна тантала объясняется высокой ценой материалов, используемых в его производстве, и сложностью технологии получения элемента № 73: для получения тонны танталового концентрата необходимо переработать до 3 тыс. т руды.

МЕТАЛЛ ИЗ ГРАНИТА. Поиски танталового сырья продолжаются и в наши дни. Ценные элементы, в том числе тантал, есть в обычных гранитах. В Бразилии уже пробовали добывать тантал из гранитов. Правда, промышленного значения этот процесс получения тантала и других элементов пока не имеет — он весьма сложен и дорог, но получите тантал из такого необычного сырья сумели.

ТОЛЬКО ОДИН

ОКИСЕЛ. Раньше считалось, что, подобно многим другим переходным металлам, тантал при взаимодействии с кислородом может образовывать несколько окислов разного состава. Однако более поздние исследования показали, что кислород окисляет тантал всегда до пятиокиси Ta2O5. Существовавшая путаница объясняется образованием твердых растворов кислорода в тантале. Растворенный кислород удаляется при нагревании выше 2200°C в вакууме. Образование твердых растворов кислорода сильно сказывается на физических свойствах тантала. Повышаются его прочность, твердость, электрическое сопротивление, но зато снижаются магнитная восприимчивость и коррозионная стойкость.

ПОКРЫТИЕ ИЗ ТАНТАЛА. Плакированием (этот термин — французского происхождения) называют нанесение на изделия из металла тонких слоев другого металла термомеханическими способами. О выдающейся химической стойкости тантала читатель уже знает. О том, что этот металл дорог и не слишком доступен, — тоже. Естественно, танталирование поверхностей менее стойких металлов было бы очень выгодно, но наносить эти покрытия электролитическими способами сложно по многим причинам. Поэтому и прибегают к плакированию. Полагают, что сталь, плакированная танталом методом взрыва, со временем станет для химической промышленности важнее стали, плакированной стеклом, хотя, конечно, цены стекла и тантала несоизмеримы. В производстве ядерных реакторов такая сталь уже применяется.

Вольфрам

Элемент № 74 причисляют обычно к редким металлам: его содержание в земной коре оценивается в 0,0055%; его нет в морской воде, его не удалось обнаружить в солнечном спектре. Однако по популярности вольфрам может поспорить со многими отнюдь не редкими металлами, а его минералы были известны задолго до открытия самого элемента. Так, еще в XVII в. во многих европейских странах знали «вольфрам» и «тунгстен» — так называли тогда наиболее распространенные минералы вольфрама — вольфрамит и шеелит. А элементный вольфрам был открыт в последней четверти XVIII в.

Очень скоро этот металл получил практическое значение — как легирующая добавка. А после Всемирной выставки 1900 г. в Париже, на которой демонстрировались образцы быстрорежущей вольфрамовой стали [9] , элемент № 74 стали применять металлурги во всех более или менее промышленно развитых странах. Главная особенность вольфрама как легирующей добавки заключается в том, что он придает стали красностойкость — позволяет сохранить твердость и прочность при высокой температуре. Более того, большинство сталей при охлаждении на воздухе (после выдержки при температуре, близкой к температуре красного каления) теряют твердость. А вольфрамовые — нет.

9

В нашей стране вольфрамовая сталь была впервые изготовлена на Мотовилихском заводе на Урале в 1865 г.

Инструмент, изготовленный из вольфрамовой стали, выдерживает огромные скорости самых интенсивных процессов металлообработки. Скорость резания таким инструментом измеряется десятками метров в секунду.

Современные быстрорежущие стали содержат до 18% вольфрама (или вольфрама с молибденом), 2–7% хрома и небольшое количество кобальта. Они сохраняют твердость при 700–800°C, в то время как обычная сталь начинает размягчаться при нагреве всего до 200°C. Еще большей твердостью обладают «стеллиты» — сплавы вольфрама с хромом и кобальтом (без

железа) и особенно карбиды вольфрама — его соединения с углеродом. Сплав «видиа» (карбид вольфрама, 5–15% кобальта и небольшая примесь карбида титана) в 1,3 раза тверже обычной вольфрамовой стали и сохраняет твердость до 1000–1100oC. Резцами из этого сплава можно снимать за минуту до 1500–2000 м железной стружки. Ими можно быстро и точно обрабатывать «капризные» материалы: бронзу и фарфор, стекло и эбонит; при этом сам инструмент изнашивается совсем незначительно.

В начале XX в. вольфрамовую нить стали применять в электрических лампочках: она позволяет доводить накал до 2200°C и обладает большой светоотдачей. И в этом качестве вольфрам совершенно незаменим до наших дней. Очевидно, поэтому электрическая лампочка названа в одной популярной песне «глазком вольфрамовым».

Минералы и руды

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 и окислами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Наиболее распространенный минерал, вольфрамит, представляет собой твердый раствор вольфраматов (солей вольфрамовой кислоты) железа и марганца (mFeWO4•nMnWO4). Этот раствор — тяжелые и твердые кристаллы коричневого или черного цвета, в зависимости от того, какое соединение преобладает в их составе. Если больше гюбнерита (соединения марганца), кристаллы черные, если же преобладает железосодержащий ферберит — коричневые. Вольфрамит парамагнитен и хорошо проводит электрический ток.

Из других минералов вольфрама промышленное значение имеет шеелит — вольфрамат кальция CaWO4. Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит немагнитен, но он обладает другой характерной особенностью — способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.

Месторождения вольфрамовых руд геологически связаны с областями распространения гранитов. Крупнейшие зарубежные месторождения вольфрамита и шеелита находятся в Китае, Бирме, США, Боливии и Португалии. Наша страна тоже располагает значительными запасами минералов вольфрама, главные их месторождения находятся на Урале, Кавказе и в Забайкалье.

Крупные кристаллы вольфрамита или шеелита — большая редкость. Обычно вольфрамовые минералы лишь вкраплены в древние гранитные породы — средняя концентрация вольфрама в итоге оказывается в лучшем случае 1–2%. Поэтому извлечь вольфрам из руд очень трудно.

Как получают вольфрам

Первая стадия — обогащение руды, отделение ценных компонентов от основной массы — пустой породы. Методы обогащения — обычные для тяжелых руд и металлов: измельчение и флотация с последующими операциями — магнитной сепарацией (для вольфрамитных руд) и окислительным обжигом.

Полученный концентрат чаще всего спекают с избытком соды, чтобы перевести вольфрам в растворимое соединение — вольфрамат натрия. Другой способ получения этого вещества — выщелачивание: вольфрам извлекают

содовым раствором под давлением и при повышенной температуре (процесс идет в автоклаве) с последующей нейтрализацией и осаждением в виде искусственного шеелита, т. е. вольфрамата кальция. Стремление получить именно вольфрамат объясняется тем, что из него сравнительно просто, всего в две стадии:

CaWO4– > H2WO4 или (NH4)2WO4– > WO3,

можно выделить очищенную от большей части примесей окись вольфрама.

Поделиться с друзьями: