Чтение онлайн

ЖАНРЫ

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Шрифт:

Резко возрастает потребление ртути в годы войны. Жидкий металл необходим для производства «гремучей ртути» Hg(ONC)2 первого известного технике инициирующего взрывчатого вещества. Хотя сейчас на вооружении имеются и другие подобные BB (азид свинца, например), «гремучая ртуть» продолжает оставаться одним из важнейших материалов для заполнения капсюлей детонаторов.

Ядовитость соединений ртути ограничивает их применение, но иногда это свойство может оказаться полезным. Ртутными красками покрывают днища кораблей, чтобы они не обрастали ракушками. Иначе корабль снижает скорость, перерасходуется топливо. Самая известная из красок такого типа делается на основе кислой ртутной соли мышьяковистой кислоты HgHAsO4. Правда, в последнее время для этой цели применяют и синтетические красители, в составе которых ртути нет.

Хотя все ртутные соли ядовиты, многие из них используются медициной, и, пожалуй, это одно из самых древних их применений. Сулема — яд, но и одно из первых антисептических средств. Цианид

ртути использовали в производстве антисептического мыла. Желтую окись ртути [12] до сих пор применяют при лечении глазных и кожных заболевании. Каломель Hg2Cl2, в молекуле которой по сравнению с молекулой сулемы есть один «лишний» атом ртути, — общеизвестное слабительное средство. Медицина использует также фосфорнокислые соли ртути, ее сульфат, иодид и другие. В наше время большинство неорганических соединении ртути постепенно вытесняются из медицины ртутными же органическими соединениями, неспособными к легкой ионизации и поэтому не столь токсичными и меньше раздражающими ткани. Органические антисептики на основе соединений ртути пригодны даже для обработки слизистых оболочек. Они дают не меньший лечебный эффект, чем неорганические соединения.

12

При очень тонком измельчении красная окись ртути HgO приобретает желтый цвет. Эта модификация получается и при выпадении окиси ртути в осадок.

Медицина применяет не только соединения, но и самую ртуть и ее пары. Начиная обследование, врач в первую очередь использует «градусник» — ртутный термометр. Ртутные манометры работают в аппаратах для измерения кровяного давления. В каждой больнице, в физиотерапевтических кабинетах поликлиник ультрафиолетовые лучи, полученные от ртутно-кварцевых ламп, глубоко прогревают ткани, помогают лечить катары, воспаления, даже туберкулез — ведь ультрафиолет губителен для многих микроорганизмов.

Ртуть — древнейший, удивительный и, можно сказать, «нестареющий» металл. Известный с незапамятных времен, он и в современной технике, в медицине, в быту находит все новые применения.

У ДРЕВНИХ НАРОДОВ. История не сохранила имени древнего металлурга, первым получившего ртуть, — это было слишком давно, за много веков до нашей эры. Известно только, что в Древнем Египте металлическую ртуть и ее главный минерал, киноварь, использовали еще в III тысячелетии до н.э. Индусы узнали ртуть во II–I вв. до н.э. У древних китайцев киноварь пользовалась особой славой, и не только как краска, но и как лекарственное средство. Ртуть и киноварь упоминаются в «Естественной истории» Плиния Старшего: значит, о них знали и римляне. Плиний свидетельствует также, что римляне умели превращать киноварь в ртуть.

Все металлы — из ртути… В этом были убеждены алхимики древности и средневековья. Разницу в свойствах металлов они объясняли присутствием в металле одного из четырех элементов Аристотеля. (Напомним, что этими элементами были: огонь, воздух, вода и земля.) Характерно, что подобных взглядов придерживались и многие видные ученые далекого прошлого. Так, великий таджикский врач и химик Авиценна (980–1037 гг. н.э.) тоже считал, что все металлы произошли от ртути и серы.

РАССКАЗЫВАЕТ ЛАВУАЗЬЕ.

«В эту реторту я ввел 4 унции очень чистой ртути, затем путем всасывания посредством сифона, который я ввел под колокол, я поднял ртуть до определенного уровня и тщательно отмерил этот уровень полоской приклеенной бумаги, точно наблюдая при этом показания барометра и термометра.

Закончив таким образом все приготовления, я зажег огонь в печке и поддерживал его почти без перерыва 12 дней, причем ртуть нагревалась до температуры, необходимой для ее кипения.

В течение всего первого дня не произошло ничего примечательного: ртуть, хотя и кипевшая, находилась в состоянии непрерывного испарения и покрывала внутренние стенки реторты капельками, сначала очень мелкими, но постепенно увеличивающимися, при достижении известного объема падавшими от собственной тяжести на дно реторты и соединявшимися с остальной ртутью.

На второй день я начал замечать плавающие на поверхности ртути небольшие красные частички, которые в течение четырех или пяти дней увеличивались в количестве и объеме, после чего перестали увеличиваться и остались в абсолютно неизменном виде. По прошествии 12 дней, видя, что окаливание ртути нисколько больше не прогрессирует, и потушил огонь и дал остыть прибору. Объем воздуха, содержащегося как в реторте, так и в ее шейке и в свободной части колокола… был до опыта равен приблизительно 50 куб. дюймам. По окончании операции тот же объем при том же давлении и той же температуре оказался равным всего лишь 42–43 дюймам; следовательно, произошло уменьшение приблизительно на одну шестую. С другой стороны, тщательно собрав образовавшиеся на поверхности красные частицы и отделив их, насколько было возможно, от жидкой ртути, в которой они плавали, я нашел их вес равным 45 гранам…

Воздух, оставшийся после этой операции и уменьшавшийся вследствие прокаливания в нем ртути до пяти шестых своего объема, не был годен больше ни для дыхания, ни для горения; животные, вводимые в него, умирали в короткое время, горящие же предметы потухали в одно мгновение, как если бы их погружали в воду. С другой стороны, я взял 45 гранов

образовавшегося во время опыта красного вещества и поместил его в маленькую стеклянную реторту, к которой был присоединен прибор, приспособленный для приема могущих выделиться жидких и воздухообразных продуктов; зажегши огонь в печке, я заметил, что по мере того как красное вещество нагревалось, его цвет становился все более интенсивным. Когда затем реторта начала накаляться, красное вещество начало мало-помалу уменьшаться в объеме и через несколько минут оно совершенно исчезло; в то же время в небольшом приемнике собралось 411/2 грана жидкой ртути, а под колокол прошло 7–8 куб. дюймов упругой жидкости [13] , гораздо более способной поддерживать горение и дыхание животных, чем атмосферный воздух…

Я дал ему сначала название в высшей степени легко вдыхаемого или весьма удобовдыхаемого воздуха: впоследствии это название было заменено названием «жизненный» или «живительный воздух».

Антуан Лоран Лавуазье. «Анализ атмосферного воздуха». «Записки Французской академии наук», 1775.

13

Так во времена Лавуазье называли газы.

РТУТЬ И ОТКРЫТИЯ ДЖОЗЕФА ПРИСТЛИ. Но не Лавуазье был первым ученым, получившим кислород из красной окиси ртути. Карл Шееле еще в 1771 г. разложил это вещество на ртуть и «огненный воздух», а выдающийся английский химик Джозеф Пристли первым в мире исследовал кислород. 1 августа 1774 г., разложив окисел нагреванием, Пристли внес в полученный «воздух» горящую свечу и увидел, что пламя приобрело необычную яркость.

В этом воздухе свеча сгорала быстрее. Ярко вспыхнув, сгорали в нем и раскаленные кусочки каменного угля, и железные проволочки… За этим опытом последовали другие, и в итоге Пристли определил важнейшие качества «дефлогистонированного воздуха».

Джозеф Пристли сделал еще много важных открытий, и почти во всех его работах использовалась ртуть. Это она помогла Пристли открыть газообразный хлористый водород. Взаимодействие поваренной соли с серной кислотой и до Пристли наблюдали многие химики. Но все они пытались собрать образующийся газ над водой, и получалась соляная кислота. Пристли заменил воду ртутью… Таким же образом он получил чистый газообразный аммиак из нашатырного спирта. Затем оказалось, что два открытых им газа — NH3 и HCl — способны вступать в реакцию между собой и превращаться в белые мелкие кристаллы. Так впервые в лабораторных условиях был получен хлористый аммоний. Сернистый газ тоже был открыт Пристли и тоже был собран над ртутью.

ВЫРУЧИЛ РТУТНЫЙ КАТОД. В 1807 г., разлагая щелочи электрическим током, выдающийся английский ученый Дэви впервые получил элементные натрий и калий. Его опыты повторил крупнейший шведский химик Берцелиус, но источник тока — вольтов столб, которым он располагал, был слишком слаб, и воспроизвести результаты Дэви Берцелиусу поначалу не удалось. Тогда он решил в качестве катода использовать ртуть и… получил щелочные металлы с меньшими затратами энергии. А тем временем Дэви пытался выделить с помощью электричества и щелочноземельные металлы. При этом он пережег свою огромную батарею и об этой неудаче написал Берцелиусу. Тот посоветовал ему воспользоваться ртутным катодом, и в 1808 г. Дэви получил амальгаму кальция, из которой выделить металл уже не составляло труда. В том же году (и тем же способом) Дэви выделил в элементном виде барий, стронций и магний.

ПЕРВЫЙ СВЕРХПРОВОДНИК. Спустя почти полтора столетия после опытов Пристли и Лавуазье ртуть оказалась сопричастна еще к одному выдающемуся открытию, на этот раз в области физики. В 1911 г. голландский ученый Гейке Камерлинг-Оннес исследовал электропроводность ртути при низкой температуре. С каждым опытом он уменьшал температуру, и когда она достигла 4,12 К, сопротивление ртути, до этого последовательно уменьшавшееся, вдруг исчезло совсем: электрический ток проходил по ртутному кольцу, не затухая. Так было открыто явление сверхпроводимости, и ртуть стала первым сверхпроводником. Сейчас известны десятки сплавов и чистых металлов, приобретающих это свойство при температуре, близкой к абсолютному нулю.

КАК ОЧИСТИТЬ РТУТЬ. В химических лабораториях часто возникает необходимость очистить жидкий металл. Метод, описанный в этой заметке, пожалуй, самый простой из надежных и самый надежный из простых. На штативе крепят стеклянную трубку диаметром 1–2 см; нижний конец трубки оттянут и загнут. В трубку заливают разбавленную азотную кислоту примерно с 5% нитрата закисной ртути Hg2(NO3)2. Сверху в трубку вставляют воронку с бумажным фильтром, в дне которого иголкой проделано небольшое отверстие. Воронку заполняют загрязненной ртутью. На фильтре она очищается от механических примесей, а в трубке — от большей части растворенных в ней металлов. Как это происходит? Ртуть — благородный металл, и примеси, например медь, вытесняют ее из Hg2(NO3)2; часть примесей просто растворяется кислотой. Очищенная ртуть собирается в нижней части трубки и под действием собственной тяжести передавливается в приемный сосуд. Повторив эту операцию несколько раз, можно достаточно полно очистить ртуть от примеси всех металлов, стоящих в ряду напряжений левее ртути.

Поделиться с друзьями: