Чтение онлайн

ЖАНРЫ

Приключения инженераРоман
Шрифт:

Получается, что одна и та же теория в первой своей части не может существовать при наличии эфира, а вторая часть этой же теории не может существовать при его отсутствии. Что же это за «теория»?!

Квантовая механика, отказавшись от внутриатомной среды, т. е. от того же эфира, заменила внутренний механизм явлений постулатами, и сегодня в ее основе лежит девять постулатов. Она распространила ряд этих постулатов, например, корпускулярно-волновой дуализм далеко за пределы той области, для которой они были как-то обоснованы. И сегодня общее число постулатов теоретической физики уже не поддается точному определению: их десятки (см. В.А. Ацюковский. Материализм и релятивизм. Критика методологии современной теоретической физики. М., Энергоатомиздат, 1992, с. 23–26).

Отказ от эфира поставил в тяжелое положение и саму теоретическую физику. В конце 20-х годов стало понятно,

что вакуум — это не пустота, поскольку в нем проявлялись разнообразные эффекты — энергетические флуктуации, поляризация и т. д. Поэтому вакуум (пустоту) стали называть физическим вакуумом (не пустотой). Но о возврате к концепции эфира никто и не помышлял.

А как обстоит дело с соответствием объективным данным?

Материалистический подход требует уточнения теории по мере накопления фактов, если новые факты не соответствуют теории, то теория должна быть изменена или даже отброшена. История естествознания подобные примеры имеет. Идеалисты же отбрасывают факты, если эти факты не соответствуют их теории.

Соответствующая история произошла с эфирным ветром.

Ни Майкельсон, ни Морли, его соратник, ни тем более Д.К. Миллер, продолжатель работ Майкельсона никогда не были согласны с приписыванием им «нулевого результата». Работы по обнаружению эфирного ветра были продолжены, и группой профессора Кейсовской школы прикладной науки американским исследователем Д.К. Миллером в 1921–1925 гг. были получены блестящие результаты. Они были в 1929 г. подтверждены самим Майкельсоном совместно с Писом и Пирсоном. Но теперь они оказались «не признанными», потому что они не соответствовали специальной теории относительности Эйнштейна. Делаются ссылки на то, что другие исследователи — Кеннеди, Иллингворт, Пиккар, Стаэль и группа Таунса-Седархольма не получили достоверных результатов. Но всеми ими были допущены грубейшие инструментальные и методические ошибки, которые в настоящее время очевидны (Эфирный ветер. Сб. статей под ред. д.т.н. В.А. Ацюковского. М.: Энергоатомиздат, 1993).

Непонимание внутренней сущности физических процессов привело к тому, что многие дорогостоящие и многообещающие проекты не дали ожидаемых результатов. Построены огромные ускорители высоких энергий, самый крупный — в Протвино имеет длину туннеля 22 км, в котором установлено 6 тысяч многотонных магнитов, опутанных полыми проводами, по которым нужно пропускать жидкий гелий. В ускорителях наколотили огромное множество элементарных частиц и так называемых «резонансов», но понимания в строении материи они не прибавили. Токамаки так и не дали устойчивой плазмы и никакой перспективы получить с их помощью неограниченное количество энергии не видно. Высокотемпературная сверхпроводимость застряла. Магнитная гидродинамика себя не оправдала. И так далее. Но на все это затрачены многомиллиардные средства, которые можно считать просто выброшенными. Отрыв теории от реальной действительности мстит жестоко.

Сегодня уже многим ясно, что к концепции эфира возвратиться необходимо. Появилась новая область теоретической физики, названная «Эфиродинамика». Выяснено, что эфир — это газоподобная среда, являющаяся строительным материалом для всех видов вещества, движения которой воспринимаются как силовые поля взаимодействий. Определены собственные параметры эфира.

Разработаны модели всех устойчивых «элементарных частиц» — протона, нейтрона, электрона, позитрона, фотона, нейтрино, структуры атомных ядер, атомов и некоторых молекул. Выявлена физическая сущность всех фундаментальных взаимодействий — сильного и слабого ядерных, электромагнитного и гравитационного. Проведено уточнение некоторых фундаментальных уравнений. Экспериментально подтверждены некоторые выводы эфиродинамики. Объяснена сущность ряда физических явлений и предсказаны некоторые эффекты, подлежащие экспериментальной проверке. Все это только первые шаги этой перспективной области науки (см. В.А. Ацюковский. Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газоподобном эфире. М.: Энергоатомиздат, 1990; то же 2-е издание, 2003). Но на пути эфиродинамики стоит все та же теория относительности Эйнштейна, не признающая существования эфира в природе, и философия квантовой механики, отвергающая само существование внутриатомных процессов и заменяющая их вероятностными представлениями.

Таким образом, теория относительности Эйнштейна и философская часть квантовой механики это и есть чистейшая лженаука, которая отвергла результаты объективных экспериментов, уничтожила саму идею наличия внутренних механизмов явлений, чем лишила себя преемственности со всем предыдущим

естествознанием, принимает административные меры к инакомыслящим и лишила естествознание возможности продвигаться далее. Нет сомнения, что такое положение в фундаментальной науке не может быть далее терпимо.

Отсюда и вытекает задача Комиссии по борьбе с лженаукой: ей необходимо положить предел беспределу в фундаментальной науке, назвать все вещи своими именами и открыть, наконец, простор для развития творческой мысли.

Экономическая газета № 11–12, 2001 г.

6. Естествознание, эфиродинамика и материализм

Не приходилось ли вам, дорогой читатель, слушать лекции по богословию или хотя бы задумываться над тем, чем богословие отличается от Закона Божия? Автору однажды довелось выслушать лекцию на эту тему в своем Летно-исследовательском институте по радиотрансляции. На саму лекцию, которая состоялась в актовом зале института, автор не пошел, о чем потом очень сожалел. Лекцию читал по приглашению нашего агитпропа профессор богословия из Загорской семинарии, исключительно грамотный и толковый человек, весьма скептически настроенный по отношению к самому Всевышнему, к религии и к церкви. Со слушателями-инженерами он был достаточно откровенен.

Из этой лекции я усвоил, что богословие это есть по своей сути природоведение, и если термин «Бог» заменить на термин «природа», то все встает на свои места. В свое время это подметил Гаврила Державин, который в своей оде «Бог», подошел к предмету исследования вполне с материалистических позиций, за что ему крепко попало.

А Закон Божий — это правила общежития, как уживаться друг с другом и с начальством, духовным и светским. На разных исторических библейских примерах в виде сказаний и притч, бесед и проповедей людям рассказывается, каким правилам поведения — заповедям нужно следовать всегда и как надо себя вести в разных конкретных ситуациях.

Таким образом, богословие это фактически есть естествознание, и отличается от естествознания тем, что природа существует не сама по себе, а путем создания ее высшим существом — Богом, который сам, правда, взялся неизвестно откуда. Но эта деталь не рассматривается, так же как в теории относительности Эйнштейна, научно установившей, что Вселенная произошла в результате Большого взрыва, не рассматриваются процессы, происходящие до этого взрыва. Так что религия и теория относительности в этой части вполне согласуются друг с другом.

Богословие — вполне хорошая наука для малограмотных верующих, которые книжек не читают, но в церковь иногда захаживают. Но нам, атеистам, не верящим в существование Бога и Большого взрыва, тоже было бы полезно уяснить, откуда что произошло, каковы реальные природные процессы, и как надо жить в обществе, по возможности без взаимного мордобоя.

Первая часть этой проблемы относится к естествознанию, а вторая — к общественным отношениям, о них речь отдельно.

Для чего вообще нужно естествознание? Считается, что природу надо знать, а вот зачем, говорится не очень четко. Однако можно попробовать ответить на этот вопрос, потому что от ответа на него существенно зависит методология естествознания. Многие, очень многие философы и ученые полагают, что природа это то, что взбрело им в голову. Расхожей стала притча о том, что вот такому-то ученому однажды пришла в голову гениальная идея, и он за нее получил Нобелевскую премию. И другому ученому тоже как-то раз пришла в голову гениальная идея, и он тоже получил Нобелевскую премию. И третьему ученому тоже… и так далее. Поэтому здесь ставится четкая задача — изобрести гениальную идею и получить за нее Нобелевскую премию. А изучать природу не обязательно.

Такая логика не очень устраивает нас, инженеров, занимающихся прикладными проблемами. Во-первых, вряд ли мы получим Нобелевскую премию даже за самое гениальное изобретение. Во-вторых, в Нобелевском междусобойчике давно хозяйничают американцы, которые лучше всех знают, кому надо давать премии, а кому не давать. А в-третьих, мы заняты текущими задачами, решение которых базируется на знании законов реальной, а не выдуманной природы, и заниматься гениальными догадками нам просто не с руки. Но изысканиями новых законов природы мы тоже не занимаемся, так же как и уточнениями уже известных законов, это не наш профиль, но нам эти законы нужны для решения наших задач. Поэтому мы хотели бы, чтобы те, кому это предписано по должности, именно это и делали, не дожидаясь, когда им в голову взбредет гениальная идея, и они получат Нобелевскую премию. К сожалению, этого они и не делают.

Поделиться с друзьями: