Приключения радиолуча
Шрифт:
В начале 50-х годов идея сжатия импульсов, несмотря на барьеры секретности, нашла свое аппаратурное воплощение в разных странах, и причем в разных вариантах. В нашей стране одно из первых устройств сжатия сложных сигналов было создано радиоинженером Виктором Михайловичем Свистовым.
Первым сложным сигналом стал длинный импульс, частота заполнения которого изменялась со временем 00 линейному закону. Специалисты называют такой сиг-нал «импульсом с ЛЧМ» (с линейной частотной модуляцией). За рубежом есть еще и иное название: «чирп-сигнал». Любопытно происхождение термина. Специалисты фирмы «Белл» впервые использовали такой сигнал для передачи телеграфных посылок — «нулей» и «единиц». Если к линии подключали наушники, то в них прослушивалось нечто вроде щебетания птиц — «чирп-чирп-чирп…»
Как же длинный импульс превратить в приемнике в короткий? Делается это так. По мере прихода длинного сигнала каждый его элемент запоминается на определенное время, а его частоту и фазу соответственно изменяют, чтобы она стала у всех элементов одинаковой. Затем в определенный момент времени все элементарные сигнальчики с одинаковой «начинкой» складываются, то есть как бы выстраиваются вертикально один над другим. В результате длительность сигнала на выходе становится равной длине одного элементика, а его амплитуда резко возрастает. Интересно, что импульс становится короче в число раз, равное базе. Вот почему базу сигнала называют также коэффициентом сжатия, вот почему ее стараются сделать как можно больше.
Устройство, осуществляющее такую операцию, называют согласованным фильтром. Это понятие ввел в секретном докладе в 1943 году американский исследователь Норе. Такой фильтр строго индивидуален. То есть для каждого сигнала существует свой согласованный фильтр, на выходе которого амплитуда сигнала по отношению к мешающим шумам будет максимальной. Доклад был опубликован через 20 лет. Независимо от него идея, как мы видели, сама возродилась, но ужена Новом уровне — для сжатия сложных сигналов. Сейчас почти все радиолокационные приемники строятся по схеме согласованного фильтра и близкой к нему.
Смысл согласованной фильтрации в том, что сигнал передатчика и фильтр в приемнике должны быть согласованы. На языке математики вышесказанное звучит так: амплитудно-частотные спектры сигнала и фильтра должны совпадать по форме, а фазочастотные спектры должны быть с разными знаками. Физически это, как говорят, «прозрачно». Зачем усиливать все частоты в сигнале равномерно? Ведь одновременно мы усиливаем и вредные шумы, сопутствующие сигналу. Согласованный фильтр обрабатывает сигнал взвешенно. Он подчеркивает те частоты, мощность которых преобладает в сигнале. Ну а что касается обратного знака фазы — так это как раз и означает операцию задержки элементика сигнала и «подкрутки» его фазочастотной начинки таким образом, чтобы все частоты в сигнале в какой-то момент времени оказались в фазе и сложились бы. Тогда возникает узкий пик большой амплитуды, и чем больше частот в сигнале, то есть чем шире спектр сигнала, тем меньше длительность пика и тем выше он.
Вне пика сигнал как бы рассыпается, частоты гасят друг друга, но к великому сожалению, не везде полностью… Эти остатки, называемые «боковыми лепестками» (они располагаются по времени и спереди и сзади основного пика), причиняют много хлопот. Например, когда в луч радара попадает сразу несколько самолетов, «боковые лепестки» могут сбить оператора с толку.
Есть еще целый ряд причин, по которым от «боковых лепестков» надо избавляться. Появилось даже такое направление, как «синтез сигналов»: по требуемой форме сигнала на выходе согласованного фильтра надо найти, какой в данном случае будет сигнал у передатчика. Правда, удается получить нужный сигнал не всегда: порой задача не решается (просто физически не существует такого сигнала, чтобы получить какой бы нам хотелось отклик на выходе согласованного фильтра), порой требуются такие точности к реализации фазочастотной структуры сигнала, что их трудно выполнить.
В связи с развитием цифровой техники в современных радарах все чаще используется активный вариант согласованного фильтра — коррелятор. Это устройство с двумя входами. На один из них поступает сигнал с входа приемника, а на другой — копия излученного сигнала. Если принятый сигнал похож на копию, тона выходе коррелятора (коррелятор осуществляет две операции: умножение и накопление) появится сжатый сигнал, конечно, с боковыми лепестками, как и в
пассивном согласованном фильтре. С точки зрения математики, согласованный фильтр и коррелятор — устройства тождественные. В отличие от пассивного согласованного фильтра, корреляторов надо множество: на каждый элемент дальности, поскольку копия должна совпадать по времени с приходом отраженного от цели сигнала. Но сейчас, в эпоху микроминиатюризации, это не столь уж серьезный недостаток.Зато коррелятор универсален. При смене сигнала не надо нового согласованного фильтра, а ведь современный радар имеет в своем арсенале, как правило, несколько разных сигналов. Чтобы перейти на новый вид сигнала, достаточно поменять копию.
В 50-е годы под радиолокацию была подведена и теоретическая база. Раньше, когда проектировали РЛС, полагались в основном на инженерный опыт. К счастью, он не противоречил разработанной теории, а скорее подтверждал ее правильность. Научной основой радиолокации стали теория вероятностей и математическая статистика. Плодотворность нового подхода показал в 1946 году в своей докторской диссертации будущий академик В. А. Котельников. Большую роль в распространении статистических методов среди инженеров-локаторщиков сыграла книга Вудворта «Теория вероятностей и теория информации с приложениями в радиолокации», вышедшая в 1953 году.
По теории, прием сигнала, будь то в радиолокации или в линии связи, сводится к угадыванию: присутствует на входе приемника сигнал вместе с шумом или только шум. В любой из этих ситуаций шум присутствует всегда. «Шум, как и бедность, являются неизбежным явлением», — невесело пошутил в годы Великой депрессии, охватившей Америку в конце 30-х годов, один известный американский радиоинженер.
Так что же шумит в радиоаппаратуре? Ну, во-первых, эфир сегодня всюду насыщен радиоволнами. Их источников великое множество: и молнии, и полярные сияния, и разного рода радиостанции, электромоторы… Перечисление всех источников радиоизлучений займет, пожалуй, не одну страницу, и постепенно открываются все новые источники помех…
Например, в результате исследований, проводимых американскими полярниками на радиостанции в Антарктиде, обнаружено, что магнитосфера, то есть та область, где магнитное поле Земли захватывает потоки заряженных частиц, сама является генератором всевозможных радиосигналов и шумов, всяких там свистов и щебетаний. Мало того, эта область имеет свойство обогащать радиоволны, проходящие сквозь нее, новыми и довольно мощными частотными составляющими.
Складываясь в антенне, радиоизлучения от разных мешающих источников, как природных, так и естественных, и создают напряжение, маскирующее полезный сигнал. По-видимому, первые радисты, принимавшие морзянку, и назвали помехи, проявлявшие себя в виде щелчков, свистов, шорохов, тресков, завываний, шумом.
Но не только эфир поставляет шумы. Шумит и сам приемник, в основном его первые каскады. Это так называемый тепловой шум, вызванный хаотическим движением электронов в элементах схемы. Чем выше температура, тем интенсивнее движение электронов, тем сильнее шумит приемник. Специалисты применяют разные способы уменьшения теплового шума, вплоть до охлаждения первых каскадов приемника. Первых — потому что именно их шум усиливается последующими каскадами. Поэтому чем ближе усилительный каскад к входу приемника, тем большую шумовую лепту он вносит.
А для военных станций кроме уже упомянутых шумов есть еще и умышленные помехи, причем ассортимент их весьма разнообразен. И против каждого вида умышленных помех, как правило, придумывают специальную схему защиты.
Теперь, когда мы выяснили, что такое шумы, вернемся опять к обнаружению. Упрощенно оно производится так. В приемнике выставляется пороговый уровень. Если сигнал превысил порог, то считается, что цель обнаружена, если нет, то считается, что цель отсутствует. Поскольку шумы, да и сигналы тоже, суть случайные процессы (их поведение заранее точно предсказать невозможно, то есть нельзя сказать, каковы точно будут амплитуда и фаза полезного сигнала, какова будет величина шума в момент прихода сигнала, да и сам момент времени неизвестен), то при вынесении решения возможны ошибки.