Интересно, что в обоих случаях существует только одно решение, т.е. только один способ заменить буквы цифрами.
Упражнения
7.1. Напишите процедуру
упростить
для упрощения алгебраических сумм, в которых участвуют числа и символы (строчные буквы). Пусть эта процедура переупорядочивает слагаемые так, чтобы символы предшествовали числам. Вот примеры ее использования:
?- упростить( 1 + 1 + а, E).
E =
а + 2
?- упростить( 1 + a + 4 + 2 + b + с, E).
E = а + b + с + 7
?- упростить( 3 + x + x, E).
E = 2*x + 3
7.2. Определите процедуру
добавить( Элемент, Список)
для добавления нового элемента в список. Предполагается, что все элементы, хранящиеся в списке, — атомы.
Список
состоит из всех хранящихся в нем элементов, а за ними следует хвост, который не конкретизирован и служит для принятия новых элементов. Пусть, например, в списке уже хранятся
а
,
b
и
с
, тогда
Список = [а, b, с | Хвост]
где
Хвост
— переменная. Цель
добавить( d, Список)
вызовет конкретизацию
Xвoст = [d | НовыйХвост]
и
Список = [а, b, с, d | НовыйХвост]
Таким способом структура может наращиваться, включая в себя новые элементы. Определите также соответствующее отношение принадлежности.
7.2. Создание и декомпозиция термов: =.., functor, arg, name
Имеются три встроенные предиката для декомпозиции и синтеза термов:
functor
,
arg
и
=..
. Рассмотрим сначала отношение
=..
, которое записывается как инфиксный оператор. Цель
Терм =.. L
истинна, если L — список, начинающийся с главного функтора терма
Терм
, вслед за которым идут его аргументы. Вот примеры:
?- f( а, b) =.. L.
L = [f, а, b]
?- T =.. [прямоугольник, 3, 5].
T = прямоугольник( 3, 5)
?- Z =.. [p, X, f( X,Y) ].
Z = p( X, f( X,Y) )
Зачем может понадобиться разбирать терм на составляющие компоненты — функтор и его аргументы? Зачем создавать новый терм из заданного функтора и аргументов? Следующий пример показывает, что это действительно нужно.
Рассмотрим программу, которая манипулирует геометрическими фигурами. Фигуры — это квадраты, прямоугольники, треугольники, окружности в т.д. В программе их можно представлять в виде термов, функтор которых указывает на тип фигуры, а аргументы задают ее размеры:
квадрат( Сторона)
треугольник( Сторона1, Сторона2, Сторона3)
окружность( R)
Одной из операций над такими фигурами может быть увеличение. Его можно реализовать в виде трехаргументного отношения
увел( Фиг, Коэффициент, Фиг1)
где
Фиг
и
Фиг1
— геометрические фигуры одного типа (с одним в тем же функтором), причем параметры
Фиг1
равны параметрам
Фиг
, умноженным на
Коэффициент
. Для простоты будем считать, что все параметры
Фиг
,
а также
Коэффициент
уже известны, т.е. конкретизированы числами. Один из способов программирования отношения
Такая программа будет работать, однако она будет выглядеть довольно неуклюже при большом количестве различных типов фигур. Мы будем вынуждены заранее предвидеть все возможные типы, которые могут когда-либо встретиться. Придется заготовить по предложению на каждый тип, хотя во всех этих предложениях по существу говорится одно и то же: возьми параметры исходной фигуры, умножь их на коэффициент и создай фигуру того же типа с этими новыми параметрами.
Ниже приводится программа, в которой делается попытка (неудачная) справиться для начала хотя бы со всеми однопараметрическими фигурами при помощи одного предложения:
увел( Тип( Пар), F, Тип( Пар1) ):-
Пар1 is F*Пар.
Однако в Прологе подобные конструкции, как правило, запрещены, поскольку функтор должен быть атомом, и, следовательно, переменная
Тип
синтаксически не будет воспринята как функтор. Правильный метод — воспользоваться предикатом '
=..
'. Тогда процедура
увел
будет иметь обобщенную формулировку, пригодную для фигур любых типов:
увел( Фиг, F, Фиг1):-
Фиг =.. [Тип | Параметры],
умножспис( Параметры, F, Параметры1),
Фиг1 =.. [Тип | Параметры)].
умножспис( [], _, []).
умножспис( [X | L], F, [X1 | L1] ) :-
X1 is F*X, умножспис( L, F, L1).
Наш следующий пример использования предиката '
=..
' связан с обработкой символьных выражений (формул), где часто приходится подставлять вместо некоторого подвыражения другое выражение. Мы определим отношение