Происхождение вкусов: Как любовь к еде сделала нас людьми
Шрифт:
Простые сахара (все они представляют собой низкомолекулярные соединения углерода) животным нетрудно превратить в энергию. В число простых сахаров входят глюкоза, фруктоза и результат их биохимического брака – сахароза. Рецепторы сладкого вкуса вознаграждают животных за обнаружение этих сахаров {13} . Они вознаграждают нас за поедание манго, меда, инжира или нектара. Сложные углеводы, такие как крахмал, тоже кажутся сладкими многим млекопитающим. Обезьяны Старого Света и человек необычны в том, что их вкусовые рецепторы сладкого вкуса не реагируют на крахмал. Однако у представителей этих видов во рту вырабатывается фермент амилаза. Он не помогает в переваривании крахмала (которое происходит позже), но, как предполагается, расщепляет часть крахмала во рту, чтобы его могли уловить рецепторы сладкого. У древних людей, как у современных горилл или шимпанзе, во рту вырабатывалось некоторое количество амилазы, однако оно было невелико. Тем не менее с переходом на более крахмалистую пищу у отдельных групп людей в ходе эволюции развилась способность вырабатывать во рту больше амилазы, возможно, чтобы крахмал быстрее воспринимался как сладкий на вкус. Эволюция может делать пресную пищу сладкой и наоборот, просто меняя ее восприятие.
13
Однако концентрация простых сахаров, необходимых, чтобы вызвать ощущение сладкого, зависит от размера животного.
Другой источник энергии для работы клеток – это жир (белок тоже можно превратить в энергию, но лишь в крайнем случае). Жиры содержат вдвое больше энергии на грамм, чем простые сахара. Неудивительно, что многим млекопитающим как будто нравится есть жирную пищу. Например, Даниелла Рид (также сотрудница Центра им. Монелла) давала своим мышам большое количество жира. Когда она их кормила, они, по ее словам, устраивали «пятничное вечернее обжорство. Они съедали весь жир, мазали им свою шерсть и валялись в нем. Они любят жир» {14} . Как это ни удивительно, мы пока не знаем, что мыши или другие животные находят в жире. Ответом может служить приятное ощущение во рту. У жиров приятная текстура (гастрономический термин для осязательных ощущений от пищи во рту). Положите в рот кусочек авокадо. Это будет приятно, но удовольствие доставляет не вкус (он не сладкий, не кислый, не соленый и даже не умами). Не связано получаемое нами удовольствие и с ароматом – у авокадо он очень простой и часто характеризуется как вкус «зелени». Мы получаем удовольствие скорее от ощущения во рту нежной мякоти плода, такую же гладкую и нежную текстуру мы ощущаем, когда едим сливочное масло или сливки. В этом ощущении отчасти и кроется объяснение {15} . Но загадки все равно остаются.
14
Из недавнего интервью с режиссером-документалистом Аннамарией Талас.
15
Недавние исследования позволили сделать предположение, что некоторые жирные кислоты вызывают реакцию вкусовых рецепторов. Жиры и масла – это триглицериды, состоящие из трех молекул жирных кислот, связанных друг с другом молекулой глицерина. Когда жиры начинают расщепляться, например при разложении, эти жирные кислоты отделяются от глицерина и друг от друга. Некоторые очень короткие жирные кислоты активируют рецептор кислого и потому воспринимаются как кислые (уксусная кислота – это очень короткоцепочечная жирная кислота). У среднецепочечных жирных кислот, однако, есть собственный вкус. Трудноописуемый вкус этих среднецепочечных жирных кислот неприятен. Рик Мэттс и его коллеги дали ему название «олеогуст» (от латинского oleo – «жирный» или «маслянистый» и gustus – «вкус»). Cordelia A. Running, Bruce A. Craig, and Richard D. Mattes, "Oleogustus: The unique taste of fat," Chemical Senses 40, no. 7 (2015): 507–16.
Вкусовые рецепторы соленого, умами и сладкого (а может быть, также рецепторы, реагирующие на фосфор и кальций) возникли в ходе эволюции, чтобы с помощью восприятия приятного вкуса подталкивать животных искать элементы, которых может недоставать в их рационе, или в некоторых случаях простые сахара, необходимые для построения новых клеток и их функционирования. Однако вкусовые рецепторы могут служить и противоположной цели – уберегать животных от опасности. Они осуществляют это, вызывая ощущение неудовольствия. В определенных ситуациях кислый вкус, свидетельствующий о повышенном содержании кислот в пище, неприятен. Мы еще вернемся к вопросу, отчего это так, в главе 7 (кислый вкус загадочен и тем не менее потенциально очень важен для нашей человеческой истории). Более понятный случай представляют собой рецепторы горького вкуса. Эти рецепторы позволяют животным определять растения, животных, грибы и все прочее в природе, что употреблять в пищу, возможно, опасно. Практически для всех основных вкусов у животных имеется всего один или два (для соленого) типа вкусовых рецепторов. А вот рецепторов, реагирующих на горечь, у животных множество.
Каждый тип рецептора горького вкуса реагирует на одно или более химическое вещество либо класс веществ. Лукреций писал о «горькой полыни», ключевой составляющей абсента, которая «вкусом своим отвратительным морщиться нас заставляет». Теперь нам известно, что один из наших «горьких» рецепторов взаимодействует с веществом абсинтином, содержащимся в полыни. Известно даже, какой это рецептор (hTAS2R46, если вам интересно). Другой рецептор реагирует на ядовитый алкалоид стрихнин; третий – на носкапин, содержащийся в растениях семейства маковых. Четвертый воспринимает гликозид салицин, которого довольно много в ивовой коре (а также аспирин). Так как способность избегать токсичных веществ очень важна (если этого не делать, то велика вероятность не оставить потомства и не передать ему свои гены), то рецепторы горького вкуса обычно эволюционируют довольно быстро. Как правило, животные разных видов обладают такими «горькими» рецепторами, которые соответствуют опасным соединениям, наиболее распространенным в их местообитаниях. У людей и мышей, например, 25 и 33 типа рецепторов горького вкуса соответственно, но общих при этом не очень много [20] . Некоторые соединения, которых мыши в ходе эволюции научились избегать (и которые поэтому воспринимаются ими как горькие), для нас безвкусны, и наоборот. Подобная вариативность существует даже внутри человеческих популяций. Как писал Лукреций, «то, что гадко иному и горько, / Может казаться другим чрезвычайно приятным и вкусным». Поэтому группа людей может обнаружить больше горьких соединений, чем любой отдельно взятый человек. Объединенное знание сообщества, таким образом, охватывает три типа соединений: те, которые всеми воспринимаются как горькие (опасные), те, которые кажутся некоторым горькими (потенциально опасные), и те, которые ни для кого не являются горькими (безопасные).
20
Anne Fischer, Yoav Gilad, Orna Man, and Svante Paabo, "Evolution of bitter taste receptors in humans and apes," Molecular Biolog y and Evolution 22, no. 3 (2004): 432–36.
Но хотя большинство видов позвоночных способны определять множество потенциально токсичных соединений с помощью многочисленных типов вкусовых рецепторов, а разные
особи способны ощущать как горькие разные соединения, отдельные особи позвоночных воспринимают только один тип горечи. Все рецепторы горького вкуса подсоединены к одному нерву и регистрируют только одно ощущение, которое осознанно воспринимается нами как горечь {16} . Если горькое вещество попадает в организм в высокой концентрации, оно может вызвать тошноту. Если его принять внутрь в такой концентрации дважды (например, в два глотка), мышцы желудка перестают сокращаться ритмично. Они начинают дергаться несинхронно, что в конечном итоге, если танец несварения достаточно энергичный, вызывает рвоту. Рецепторы горечи сообщают нам, что дело плохо, а затем с помощью рвоты напоминают о серьезности положения и одновременно помогают избавиться от вредного вещества.16
Система предупреждения используется властями для обеспечения безопасности населения. Например, самое горькое из известных на данный момент соединений, бензоат денатония, часто добавляется в средства бытовой химии и пестициды, чтобы предупредить любого, кто случайно проглотит подобную продукцию, о ее опасности.
Неприятное ощущение, связанное с горькими веществами, которое переживает существо конкретного вида, столь же субъективно, как и ощущение соленого или сладкого. Его главный смысл в том, чтобы вызвать неудовольствие, которое, словно палка, будет отгонять животных от вещей, избегать которых самостоятельно им не хватает ума {17} . Человек научился порой игнорировать предупреждение о горечи, которое посылают нам эти рецепторы, например, когда мы пьем кофе, хмелевое пиво или едим карелу (горькую тыкву). Мы делаем это, пусть даже наш язык и вопит: «Горько. Опасность! Горько. Опасность!» «Замолчи, – говорим мы своему языку, наслаждаясь кофе, чаем или пивом. – Я знаю, сколько этого токсина могу потребить без вреда. Заткнись, я знаю, что делаю. Я уже научился».
17
Эта палка сильнее действует на детей. Дети больше реагируют на горьковатые вкусы кофе, шоколада и содержащего хмель пива, чем взрослые. Мы не знаем, что происходит в мозге и как восприятие вкуса меняется с возрастом, но это факт. Возможно, более выраженное отвращение к горьким и потенциально токсичным продуктам у детей адаптивно и возникло в ходе эволюции, чтобы помочь защитить детей, которые более склонны как находить новые виды пищи, так и поглощать их, не представляя себе последствий. Детей также привлекают более высокие концентрации сахара и соли. В общем, детский язык в своих увещеваниях кричит громче: «СЮДА. НЕТ. НЕТ. НЕТ. НЕ СЮДА». См., напр.: J. A. Mennella, M. Y. Pepino, and D. R. Reed, "Genetic and environmental determinants of bitter perception and sweet preferences," Pediatrics 115, no. 2 (2005): e216-e222.
Таблица 1.1. Пороги вкусовой чувствительности на разные вещества у человека
Минимальная концентрация вещества, необходимая для возбуждения вкусового рецептора, значительно варьирует в зависимости от вида рецептора. Рецепторы горького вкуса обычно реагируют на «свое» вещество, например хинин – ядовитый алкалоид, вырабатываемый растениями, даже если его концентрация невелика. Эти рецепторы возникли в ходе эволюции, чтобы предупреждать нас об опасности, и лучше всего, если это сработает до того, как мы проглотим много чего-то неподходящего, попавшего нам на язык. С другой стороны, сахар полезен в больших концентрациях, и наш язык даже не определит, что ему попалось что-то сладкое, если концентрация этого вещества будет низкой. Остальные вкусовые рецепторы занимают место где-то посередине. Рецептор кислого вкуса – самый необычный из рецепторов и заслуживает специального рассмотрения, поэтому мы еще вернемся к нему в главе 7. Приведенные здесь данные получены при изучении большой группы людей. Однако эти пороговые значения различаются как для разных видов животных, так и для отдельных людей.
_____________
* 1 ppm = 0,001 %.
То, что мы только что рассказали о вкусовой системе, характерно для среднестатистического наземного позвоночного. Однако по мере того, как наземные позвоночные изменялись в процессе эволюции, менялся и их образ жизни. Подобные перемены приводили к эволюционным изменениям вкусовых рецепторов (а порой становились их следствием), так что восприятие мира с помощью рта у каждого вида свое собственное, отличное от других. Или, по словам Лукреция, «Ибо живым существам присущи различные чувства, / Что по-особому все, подходящее им, ощущают. / Ибо мы видим, что звук проникает своею дорогой, / Вкус же от пищи своей, и своею – удушливый запах» {18} . Одни из этих изменений трудноуловимы и связаны с порогом чувствительности к определенным соединениям. Другие изменения более резкие и включают потерю способности ощущать сами вкусы.
18
В подобных утверждениях Лукреций не проводил различий между человеком и другими животными.
Едва ли не самый быстрый из медленных путей эволюции вкусовых рецепторов – это мутации. Гены вкусовых рецепторов обычно большие и потому склонны накапливать мутации, которые повреждают их так, что они не могут больше функционировать. За миллионы лет гены тех или иных вкусовых рецепторов неоднократно ломались, когда желания (или отсутствие желаний) животного не совпадали с его потребностями. Кошачьи, будь то пумы, ягуары или домашние котики, – строгие хищники (хотя в главе 4 описан особый случай с кошками и авокадо). У кошачьих развились специализированные формы охоты, позволяющие им чрезвычайно эффективно убивать добычу. Если вы вернетесь к рисунку 1.1, то увидите, что у животного, питающегося только другими животными, в рационе обычно присутствуют азот и фосфор в необходимой ему концентрации. Хищник также получает из клеток своей добычи достаточно энергии в форме жира и сахаров для своей жизнедеятельности. У кошачьих, имеющих рецепторы сладкого, не повышаются шансы на выживание и репродуктивный успех по сравнению с теми, у кого их нет; если животные будут проводить слишком много времени в поисках нектара и слишком мало времени тратить на охоту, то вероятность выживания у них даже понизится. Поэтому, когда у какой-то древней кошки произошла поломка гена «сладкого» рецептора, эта кошка тем не менее выжила. И более того, как недавно показал Ли Ся (на тот момент тоже научный сотрудник Центра им. Монелла), она не просто выжила, а стала предком всех живущих ныне кошек. Ни у одного современного вида кошачьих нет работающих рецепторов сладкого вкуса [21]
21
Xia Li, Weihua Li, Hong Wang, Douglas L. Bayley, Jie Cao, Danielle R. Reed, Alexander A. Bachmanov, Liquan Huang, Veronique Legrand-Defretin, Gary K. Beauchamp, and Joseph G. Brand, "Cats lack a sweet taste receptor," Journal of Nutrition 136, no. 7 (2006): 1932S-1934S; Peihua Jiang, Jesusa Josue, Xia Li, Dieter Glaser, Weihua Li, Joseph G. Brand, Robert F. Margolskee, Danielle R. Reed, and Gary K. Beauchamp, "Major taste loss in carnivorous mammals," Proceedings of the National Academy of Sciences 109, no. 13 (2012): 4956–61.
Конец ознакомительного фрагмента.