Психодиагностика: конспект лекций
Шрифт:
Однако метод известных групп обладает серьезным недостатком. Он не всегда позволяет использовать тест для прогноза. Дело в том, что при формировании известных групп оценивается поведение, которое происходило в прошлом, а мы хотим сделать тест для прогноза поведения, которое будет происходить в будущем. Многие тесты, используемые в образовательной психодиагностике, обладают указанным недостатком. Они проходят в лучшем случае проверку по методике известных групп и не обладают прогностической валидностью (или эта валидность строго экспериментально не доказана).
4. Основные схемы валидизации психодиагностических методик
Решение проблемы прогностической валидности под силу только крупным научно-методическим центрам. Ведь к психометрическому исследованию по проверке прогностической валидности надо привлекать на порядок больше испытуемых – не 30, а, как минимум, 300, так как неизвестно, кто из этих 300 попадет в крайние группы.
Например,
Различение обычной дешевой схемы валидизации теста (по известным группам) и дорогой прогностической схемы валидизации теста – важнейший элемент психодиагностической грамотности не только для психологов, но и для педагогов, как, впрочем, и для любых заказчиков психодиагностической информации.
ЛЕКЦИЯ № 14. Стандартизация тестов
1. Тестовые нормы
Что, несомненно, должен знать и уметь делать каждый грамотный пользователь теста, так это понимать, что такое тестовые нормы и как ими пользоваться.
Первоначальный суммарный балл, подсчитанный с помощью ключа, не является показателем, который можно диагностически интерпретировать. Его называют в тестологии «сырым» тестовым баллом. Применение тестовых норм в профессионально организованной психодиагностике основывается на переводе тестовых баллов из «сырой» шкалы в стандартную. Эта процедура называется стандартизацией тестового балла.
Допустим, мы провели тест из 20 заданий, и испытуемый дал 12 правильных ответов. Можно ли при этом сказать, что способность у испытуемого выражена лучше или хуже, чем в среднем? Нет. Для такого вывода нужно сравнить балл 12 со средним баллом по представительной выборке испытуемых.
Выборка, на которой определяются статистические тестовые нормы, называется выборкой стандартизации. Ее численность, как правило, не меньше 200 человек. Столько должны принять участие в психометрическом эксперименте по определению тестовых норм – в эксперименте по стандартизации теста.
2. Корреляция качественных признаков
Корреляция качественных признаков – метод анализа связи переменных, измеряемых в порядковых шкалах и шкалах наименований (см. шкалы измерительные). Наиболее часто такой корреляционный анализ проводят с помощью коэффициентов ранговой корреляции, используемых в случаях, когда обе переменные измеряются в шкалах порядка или легко могут быть преобразованы в ранги. При измерении сравниваемых переменных в шкалах наименований широко применяются коэффициенты сопряженности, в которых в качестве промежуточной расчетной величины используется критерий согласия Пирсона (см. критерий X2). Наиболее часто в таких расчетах пользуются коэффициентом сопряженности Пирсона:
Значение P всегда положительно и измеряется от нуля до единицы. Особенностью коэффициента сопряженности Пирсона является то, что максимальное его значение всегда меньше +1 и в значительной степени зависит от количества наблюдений (размера таблицы). В случае квадратной таблицы (k x k):
Так, в таблице размером (5 x 5) Pmax = 0,894; в таблице (10 x 10) Рmax = 0,949. Поэтому окончательной формой выражения связи между переменными с помощью коэффициента Пирсона является его отношение к величине Рmax для данного случая (Р / Рmax).
При расчете сопряженности находит применение также коэффициент Чупрова:
где t – число столбцов таблицы;
k – число строк таблицы.
В психологической диагностике описанные коэффициенты используются относительно редко.
3. Ранговая
корреляцияРанговая корреляция – метод корреляционного анализа, отражающий отношения переменных, упорядоченных по возрастанию их значения. Наиболее часто ранговая корреляция применяется для анализа связи между признаками, измеряемыми в порядковых шкалах (см. шкалы измерительные), а также как один из методов определения корреляции качественных признаков. Достоинством коэффициентов ранговой корреляции является возможность их использования независимо от характера распределения коррелирующих признаков.
В практике наиболее часто применяются такие ранговые меры связи, как коэффициенты ранговой корреляции Спирмена и Кендалла. Первым этапом расчета коэффициентов ранговой корреляции является ранжирование рядов переменных (табл. 2). Процедура ранжирования начинается с расположения переменных по возрастанию их значений. Разным значениям присваиваются ранги, обозначаемые натуральными числами. Если встречается несколько равных по значению переменных, им присваивается усредненный ранг.
В таблице 2 приведены данные для расчета коэффициентов ранговой корреляции. Во второй графе представлены ранжированные показатели по первому из сравниваемых распределений (оценка IQ, в третьей графе – соответствующие им данные теста зрительной памяти).
Коэффициент корреляции рангов Спирмена (rs) определяется из уравнения:
где di – разности между рангами каждой переменной из пар значений X и Y;
n – число сопоставляемых пар.
Используя данные таблицы 2, получаем:
Коэффициент корреляции рангов Кендалла определяется следующей формулой:
где Р и Q рассчитываются по таблице 12.
Так, в восьмой графе подсчитывается, начиная с первого объекта X, сколько раз его ранг по Y меньше, чем ранг объектов, расположенных ниже. Соответственно, в девятой графе (S2) фиксируется, сколько раз ранг Y больше, чем ранги, стоящие ниже его в столбце X. Подставляя эти данные в формулу, получаем:
При сопоставлении приведенных коэффициентов оказывается, что коэффициент более информативен, чем rs, и рассчитывается проще. Поэтому на практике при расчете рановой корреляции отдают предпочтение коэффициенту (табл. 3).
ЛЕКЦИЯ № 15. Измерительные шкалы
Измерительные шкалы (от лат. scala – «лестница») – форма фиксации совокупности признаков изучаемого объекта с упорядочиванием их в определенную числовую систему. Измерительные шкалы представляют собой метрические системы, моделирующие исследуемый феномен путем замены прямых обозначений изучаемых объектов числовыми значениями и отображение пропорций континуального состава элементов объекта в соответствующих числах. Каждому элементу совокупности проявлений свойств изучаемого объекта соответствует определенный балл или шкальный индекс, количественно устанавливающий положение наблюдаемой единицы на шкале, которая охватывает всю совокупность или ее часть, существенную с точки зрения задач исследования. Операция упорядочивания исходных эмпирических данных в шкальные носит название шкалирования. Измерительные шкалы являются главным средством сбора и анализа статистического материала как в прикладных, так и в теоретических исследованиях. Они различаются в зависимости от характера функции, лежащей в основе их построения. В качестве такой функции могут служить: сравнение по признаку убывания или возрастания, ранжирование, оценка интенсивности признака или оценка пропорциональных отношений между признаками. Наиболее общая классификация измерительных шкал предложена С. Стивенсон. В ее основу положен признак метрической детерминированности. Согласно этому признаку шкалы делятся на метрические (интервальные и шкалы отношений) и неметрические (номинативные, шкалы порядка).