Пуанкаре
Шрифт:
Этот решающий эксперимент дал величайший из всех «отрицательных» результатов в истории науки. Сам Майкельсон расценивал его как доказательство известной гипотезы об увлечении эфира движущейся Землей. Но совокупность имевшихся тогда экспериментальных данных и проведенный вскоре теоретический анализ всей проблемы не позволили согласиться с его выводами. Опыт привел к совершенно противоречивой ситуации в физике того времени, потребовал пересмотра основных ее понятий и представлений.
Глубокий кризис
Намереваясь посвятить себя физике, будущий великий физик-теоретик Макс Планк в 1875 году обратился за советом к декану физического факультета Мюнхенского университета. "Физика — область знания, в которой уже почти все открыто. Все важные открытия уже сделаны. Едва ли вам имеет смысл поступать на физический факультет" — такую бесперспективную картину нарисовал ему авторитетный профессор.
Меньше всего ожидалось, что это
Теория классической физики оказалась совершенно беспомощной перед опытами, в которых были установлены особенности распространения света в движущихся системах. «Отрицательный» результат опыта Майкельсона — Морли, доказав принципиальную неуловимость, ненаблюдаемость эфира, исключил последние возможности традиционного, согласующегося с законами классической теории объяснения экспериментально установленных свойств света. Эксперимент Брадлея, в котором наблюдалась аберрация звездного света, вызванная движением Земли вокруг Солнца, и эксперимент Физо, в котором устанавливалось частичное суммирование скоростей при распространении света в движущейся воде, совершенно исключали гипотезу полного увлечения эфира движущейся Землей, как будто бы согласующуюся с результатом опыта Майкельсона — Морли. Вся совокупность этих опытов в целом создавала безвыходную ситуацию в физике конца XIX века.
Кризис физической теории, вызванный проблемой объяснения установленных на опыте свойств света, усугубился неожиданно последовавшими как из рога изобилия величайшими экспериментальными открытиями совершенно новых и удивительных явлений. Начиная с 1895 года, когда Рентген открыл проникающие лучи, буквально каждый следующий год приносил ошеломляющее открытие: 1896 год — открытие явления радиоактивности, 1897 год — открытие электрона, 1898 год — открытие радия и полония, 1899 год — открытие сложного состава радиоактивного излучения. Пуанкаре пристально следил за крутой ломкой, происходящей в физике конца XIX века, нередко первым регистрируя наиболее острые моменты, как, например, обнаружение кажущегося несохранения энергии при радиоактивном распаде. Он неоднократно подчеркивал фундаментальный характер явления радиоактивности. Ему принадлежит меткая фраза о "радии — великом революционере нашего времени".
Каскад сенсационных открытий окончательно подорвал претензии классической физики на полное знание и объяснение физической действительности. Неспособность истолковать наблюдаемые на опыте особенности распространения света дополнялась теперь отсутствием каких-либо представлений о природе вновь открытых явлений. Экспериментальная физика обрела могущество, развеяв миф о полноте и близком завершении физики.
Одна из острейших проблем того времени была поставлена самой теоретической физикой. Расчеты распределения энергии в спектре излучения
Одна из острейших проблем того времени была поставлена самой теоретической физикой. Расчеты распределения энергии в спектре излучения абсолютно черного тела приводили к явно несуразному результату. В теоретически рассчитанном спектре энергия излучения неограниченно возрастала с уменьшением длины испускаемой волны. Это означало, что вся энергия нагретого тела должна была уходить в коротковолновое излучение. Неприемлемость такого теоретического предсказания была очевидна и без обращения к специальному опыту. Над решением этой проблемы, получившей название ультрафиолетовой катастрофы, безрезультатно бились крупнейшие физики мира.
Все эти вставшие перед физикой проблемы настоятельно требовали выработки новых физических понятий и представлений и создания на их основе теоретического обобщения всей совокупности недавно полученных экспериментальных данных.
Глава 10 НА РУБЕЖЕ ВЕКОВ
Успех неподтвердившейся гипотезы
В последние дни февраля парижское солнце, не ведая о том, что его включили в состав действующего экспериментального оборудования, спряталось за плотной завесой облаков. Это срывало план исследований, намеченный Анри Беккерелем. Не оставалось ничего иного, как положить приготовленные материалы в ящик стола и терпеливо дожидаться солнечных дней. Беккерель даже не подозревал, что, поступая таким образом, он начинает новую серию интереснейших опытов, далеко не самых сложных и мудреных, но, безусловно, наиболее значительных из всех экспериментальных работ, проводившихся
в то время. Для него это был только досадный перерыв в столь успешно разворачивающемся исследовании.Сумрачные, серые дни не портили ему настроения. Главной цели он все-таки достиг: блестяще подтвердилась смелая гипотеза Пуанкаре. Беккерель вновь обращается мыслями к памятному разговору с прославленным коллегой по Академии наук. Когда 20 января 1896 года на очередном заседании академии Пуанкаре сделал сообщение об открытии Рентгеном невидимых глазу всепроникающих лучей, он был поражен не меньше других и долго разглядывал только что повторенные в Париже снимки просвеченной кисти руки человека. Потом докладчик показывал полученный им в начале января отдельный выпуск "Известий Вюрцбургского физико-математического общества", в котором Рентген в лаконичной форме тезисов сообщал "о новом роде лучей". Таинственные «х-лучи», как их назвал автор, свободно проходили сквозь непрозрачные предметы и, вызывая почернение фотопластинки, давали изображение внутренних, скрытых деталей. В статье утверждалось, что новое излучение возникает при работе разрядных трубок, а для его обнаружения достаточно иметь обычную фотопластинку, завернутую в светонепроницаемую бумагу.
Разрядные трубки не были к тому времени экспериментальной новинкой. Вот уже около сорока лет буквально во всех европейских университетах студентам демонстрировалось эффектное и поучительное зрелище свечения газового разряда в этих запаянных вытянутых стеклянных колбах с двумя электродами. Удивительно, что никому еще до сих пор не приходилось наблюдать это необычное излучение. Можно понять ту торопливость, с которой Рентген поспешил оповестить всех видных ученых других стран о своем приоритете. [37] Просто не верилось, что такое потрясающее открытие могло быть сделано со столь скромной экспериментальной техникой. Беккерель, конечно, не мог знать, что ему предстоит совершить не менее значительное открытие с помощью еще более простых экспериментальных средств.
37
[37] Но даже эти меры не помешали другому немецкому физику, Филиппу Ленарду, претендовать на соучастие в открытии новых лучей на том основании, что в его исследованиях катодных лучей уже содержались первые указания на эффекты, обусловленные проникающим излучением. Видимо, учитывая, что исследования Ленарда в значительной мере подготовили открытие, сделанное Рентгеном, Лондонское королевское общество отметило обоих ученых медалью Румфорда, а нобелевский комитет Шведской академии, присудив первую Нобелевскую премию Рентгену за открытие х-лучей, отметил одной из следующих премия Ленарда за исследование катодных лучей.
После заседания Пуанкаре просит Беккереля немного задержаться. Раскрыв выпуск вюрцбургских «Известий», он перевел ему отмеченный на полях абзац: "…наиболее сильно флуоресцирующее место стенки разрядной трубки является также и главным исходным пунктом расходящихся во все стороны х-лучей".
— Как, по-вашему, не может ли быть какой-нибудь глубокой связи между новым излучением и этим флуоресцирующим пятном на стенке трубки? — слышит Беккерель обращенный к нему вопрос.
В последовавшем затем обмене мнений Пуанкаре посвятил Беккереля в свое предположение о том, что незримые лучи являются компонентой излучения, сопровождающей флуоресценцию или фосфоресценцию. [38]
38
[38] Свечение, испускаемое некоторыми веществами после облучения их ультрафиолетовым или видимым светом, называется флуоресценцией или фосфоресценцией в зависимости от того, наблюдается ли оно в течение короткого или длительного периода времени.
— Не хотите ли проверить мою гипотезу? — предлагает он, уже прощаясь.
Пуанкаре совсем не случайно обратился именно к Беккерелю. Продолжая семейные традиции академической династии Беккерелей, Анри был известным специалистом по флуоресценции и фосфоресценции. Его дед, член Парижской академии, заинтересовавшись этими явлениями, создал при Музее естественной истории специальную лабораторию для их исследования. Отец Анри, тоже известный физик и член академии, разработал классификацию процессов фосфоресценции, установил ряд закономерностей этого явления и изучил фосфоресценцию многих веществ, в том числе урановых соединений. Унаследовав от них увлеченность "холодным свечением", Анри Беккерель с первых же шагов своей научной карьеры занялся исследованиями в этой области физики. Идея Пуанкаре сразу же захватила его воображение, и он решает проверить, не испускаются ли х-лучи обычными веществами при их фосфоресценции. К опытам можно было приступить незамедлительно, благо в лаборатории Беккерелей была богатая коллекция минералов. Появившаяся в конце января статья Пуанкаре, в которой он высказывал то же самое предположение тесной связи между фосфоресценцией и рентгеновскими лучами и ставил вопрос о проведении необходимых экспериментов, только подстегнула его рвение.