Путешествие к далеким мирам
Шрифт:
Впрочем, последнее объяснение не является бесспорным. Если бы, кроме яблока и Земли, во Вселенной не было других тел, то для яблока существовал бы только один путь — на Землю. Однако в действительности яблоко притягивается не только Землей, но и Солнцем, Луной и другими небесными телами. Если оно падает все же именно на Землю, то только потому, что притяжение к ней неизмеримо сильнее, чем к любому другому небесному телу, — ведь Земля гораздо ближе. Точно так же и во многих других случаях можно рассматривать только два взаимно притягивающихся тела, подобно Земле и яблоку, пренебрегая влиянием остальных.
Кстати сказать, теорию движения небесных тел в нашей солнечной системе удалось построить только в виде решения такой «проблемы двух тел». Даже для «проблемы трех тел», не говоря уже о большем их числе, как это обычно бывает в действительности, получить общее решение пока не удалось из-за математических трудностей. Поэтому приходится учитывать влияние остальных тел в виде искажений, или так называемых возмущений которые эти тела вносят
Не следует думать, однако, что мы пренебрегаем у себя на Земле притяжением Солнца или Луны потому, что оно мало по абсолютной величине. Как известно, действием этого притяжения объясняются такие грозные природные явления, как приливы и отливы, когда в движение приводятся миллиарды тонн океанской воды. В будущем энергия этой воды заставит работать мощнейшие «приливные» гидроэлектростанции. Даже далекий от нас Нептун, одна из внешних планет солнечной системы, находящийся на расстоянии более 4 миллиардов километров от Земли, действует на нее с силой 18 миллионов тонн.
Сила тяжести играет огромную и, конечно, положительную роль в природе. Если бы не существовало силы тяжести, то Вселенная не имела бы того высокоорганизованного вида, который она имеет в настоящее время. Не существовало бы, конечно, солнечной системы; не существовали бы и мы с вами. Впрочем, если бы даже и существовали, то удержаться на Земле нам бы не удалось — достаточно было бы легкого толчка, для того чтобы навсегда распроститься с родными местами и отправиться блуждать по просторам Вселенной.
Однако совсем другую роль играет сила тяжести, когда мы рассматриваем возможность межпланетного полета. Действительно, когда мы путешествуем по земной поверхности, то почти не замечаем действия силы тяжести, если только не совершаем какого-нибудь альпинистского восхождения. Другое дело — межпланетный полет. Совершая такой полет, мы должны все время удаляться от Земли и, значит, преодолевать силу тяжести. Сила притяжения к Земле, защищающая нас от опасности случайно улететь с Земли, не позволяет нам расстаться с ней и тогда, когда мы этого хотим. Так этот «союз» с Землей становится пленом.
Как же можно разбить мощные цепи тяготения, превращающие нас в «узников» Земли, как преодолеть это главное препятствие на пути к осуществлению межпланетного полета?
Само собой разумеется, что хорошо известные средства, с помощью которых люди с давних пор штурмовали небо, преодолевая силу тяжести, — воздушный шар, дирижабль и самолеты самых разнообразных конструкций, — для осуществления межпланетного полета не годятся.
Для полета они нуждаются в воздухе, которого нет в мировом пространстве.
Однако наука нашла по крайней мере одно действенное средство. Им является скорость, которую нужно сообщить межпланетному кораблю. [7]
Чтобы сообщить какому-нибудь предмету, например простому камню, некоторую скорость, мы должны его бросить, толкнуть. Чем больше сила толчка, тем больше и скорость. Конечно, сила человеческих мышц невелика — чемпион мира советский спортсмен Юрий Степанов прыгает через планку, установленную на высоте 2 метров 16 сантиметров. Камень, брошенный самой сильной рукой, поднимается вверх на 2–3 десятка метров. Но вот на помощь силе приходит разум. Стрела, выпущенная из тугого лука, летит на десятки и даже сотни метров; пуля из винтовки уносится на километры; снаряд из дальнобойного орудия поднимается ввысь на 40 километров.
7
Принципиально для совершения межпланетного полета нет нужды в большой скорости. Можно обойтись и весьма малой скоростью с тем, чтобы с этой скоростью медленно, но неуклонно удаляться от Земли в глубь мирового пространства. Однако эта возможность является лишь теоретической и вряд ли когда-нибудь будет осуществлена. Следует также отметить, что в последнее время в зарубежной печати, да и в нашей тоже, появляются интригующие сообщения о возможности создания «невесомых» самолетов и межпланетных кораблей. Эти возможности будто бы появляются в связи с успехами новой науки, так называемой «электрогравитики», пытающейся установить природу сил тяготения и связать их с электромагнитными полями. Действительно, по выводам созданной Эйнштейном общей теории относительности такая связь существует и, в частности, при обнаружении теоретически предсказанной элементарной частицы — гравитона, который является по этой теории носителем «гравитации», как электрон является единицей электричества, могут быть открыты средства перехода гравитонов в другие элементарные частицы. Это, конечно, открыло бы возможность управления полем тяготения и, может быть, действительно привело бы к революции в авиации и астронавтике. Однако такие возможности пока еще не более как математические спекуляции, и ко всякого рода сообщениям об открытии веществ, являющихся «экраном» от сил тяготения, повторяющим несостоятельную с научной точки зрения уэллсовскую версию о существовании «кеворита» — вещества с такими именно свойствами, — следует относиться с большой осторожностью.
Все выше и все дальше… А нельзя ли так размахнуться камнем, чтобы забросить его… на Луну? Принципиально можно, только очень уж сильно надо будет его для этого бросить.
Чем больше сила, с которой мы бросаем камень, тем больше его начальная скорость, а чем больше эта скорость, тем выше залетает камень. Брошенный вверх с определенной начальной скоростью, камень летит постепенно все медленнее и медленнее, пока не останавливается на мгновение совсем и затем начинает все быстрее падать обратно на Землю. Что замедляет полет камня вверх и снова ускоряет его при падении? Сила тяжести. Если бы воздух, в котором совершает свой полет камень, не оказывал ему сопротивления, уменьшая скорость, то при ударе о Землю камень обладал бы как раз той же скоростью, которая была ему сообщена при броске.
Это позволяет найти скорость, которая должна быть сообщена камню, чтобы он достиг, допустим, орбиты Луны или Марса. Брошенный с этой скоростью камень достигнет заданной орбиты, а затем все быстрее начнет падать обратно на Землю.
А можно ли сообщить камню такую скорость, чтобы он вовсе не возвратился на Землю, продолжая бесконечно долго удаляться от нее в мировое пространство? Оказывается, можно, по крайней мере теоретически. Эта скорость должна равняться той скорости, которую камень имел бы при падении на Землю «из бесконечности», как говорят математики. [8] Бесконечность здесь означает просто «очень-очень далеко», настолько далеко, что даже значительное увеличение расстояния уже не меняет скорости, с которой камень падает на Землю. Так, если один камень падает на Землю с высоты 10 миллионов километров, а другой — с высоты 20 миллионов километров, то разница в скоростях обоих камней будет совершенно ничтожной.
8
При этом мы по-прежнему не учитываем сопротивления воздуха, то есть считаем, что камень падает в пустоте, и, кроме того, рассматриваем проблему двух тел, то есть исходим из того, что кроме Земли и камня, других тел в природе не существует. Мы не учитываем также вращения Земли вокруг своей оси.
Скорость, которая должна быть сообщена камню (или любому другому телу), чтобы он улетел вовсе от Земли и не возвратился обратно, продолжая удаляться от нее, называется обычно скоростью отрыва.
Когда мы сообщаем камню такую скорость, это не значит, конечно, как иногда считают, что камень улетает так далеко от Земли, что сила ее притяжения перестает сказываться и камень перестает притягиваться Землей. Такой точки в мировом пространстве, в которой перестала бы действовать сила тяжести, в том числе и сила притяжения к Земле, конечно, не существует. Сила притяжения к Земле действует всюду, только величина ее может стать ничтожно малой, если камень находится далеко от Земли. Эта величина изменяется обратно пропорционально квадрату расстояния от центра Земли: когда расстояние увеличивается вдвое, сила притяжения уменьшается в 4 раза; когда оно увеличивается в 3 раза, то сила уменьшается в 9 раз, и т. д.
Собственно говоря, именно эта особенность закона всемирного тяготения и делает возможным межпланетный полет. Если бы сила притяжения к Земле оставалась с высотой постоянной, а не уменьшалась так быстро, то мы не могли бы даже надеяться совершить путешествие в мировое пространство, разве только уж в очень отдаленном будущем.
В этом легко убедиться. Чтобы порвать цепи земного тяготения, нужно, естественно, совершить определенную работу. Как найти величину этой работы? Когда мы поднимаем какой-нибудь груз, скажем, в 1 килограмм на высоту 1 метра, то при этом совершаем работу, равную, как известно, 1 килограммометру. Если же мы решили поднять этот груз на высоту 384 миллионов метров, то есть забросить его на Луну, то нам пришлось бы при неизменной силе тяжести и работу совершить в 384 миллиона раз большую. Это такая работа, которую производит за час двигатель мощностью около 1500 лошадиных сил. Но самый легкий межпланетный корабль должен весить десятки, если не сотни тонн. Поэтому потребная мощность двигателя корабля и расход топлива на полет должны быть в этом случае такими огромными, что решить эту задачу не под силу современной технике. Но так было бы, к счастью, только при постоянной, не меняющейся с высотой силе тяжести. В действительности же сила тяжести, как указывалось выше, быстро уменьшается по мере удаления от Земли. Чем дальше от Земли, тем легче преодолевать притяжение к ней. Поэтому работа, которую нужно совершить, чтобы забросить килограммовую гирю на Луну, на самом деле оказывается примерно в 60 раз меньшей — она равна приблизительно 6,3 миллиона килограммометров. Такую работу совершит подъемный кран, переместив 630 тонн кирпича на высоту 10 метров. И эта работа очень велика, но современная техника в состоянии решить задачу осуществления межпланетного полета, как об этом будет рассказано позже. Вот что означает уменьшение силы тяжести с высотой.