Путешествие к далеким мирам
Шрифт:
Пока же радионавигация в мировом пространстве — дело более далекого будущего, и астронавтам придется пользоваться в качестве ориентиров лишь небесными светилами — Солнцем, планетами (в том числе и той, к которой совершается полет), звездами, которые всегда видны. Уже сейчас в авиации широко пользуются методами астронавигации, то есть ориентировки по небесным светилам. Первые опыты такой ориентировки были произведены с воздушных шаров еще в конце прошлого века. В разработке методов астронавигации большая роль принадлежит авиации нашей страны.
Космонавигация в мировом пространстве будет основываться на достижениях и опыте авиационной астронавигации. Однако многое в межпланетном полете не будет похожим на полет в пределах земной атмосферы. На черном небе будет видно во много раз большее число звезд, непривычным будет поведение планет и жгучего Солнца и многое
Чтобы определить положение на земной поверхности, нужно указать две координаты: долготу и широту. Межпланетный полет — это полет в пространстве, и для определения положения корабля в данный момент нужны три координаты. Две из них могут быть отнесены к плоскости эклиптики, которая, как было указано выше, в какой-то мере заменяет земную поверхность в космическом полете, поскольку в большинстве случаев подобные полеты будут совершаться именно в этой плоскости. Третья координата будет показывать отклонение от плоскости эклиптики.
Можно, например, определять положение межпланетного корабля, совершающего полет в солнечной системе, расстоянием его от Солнца и «долготой», то есть положением точки на окружности данного радиуса, отсчитываемого от Солнца. Это позволило бы расчертить всю эклиптику невидимой сеткой меридианов и параллелей, как это сделано на карте земного шара. Вероятно, имело бы смысл построить эту координатную сетку по так называемой системе «условных меридианов», разработанной советскими штурманами для полетов в районе Северного полюса. Эта система устраняет неудобства, связанные с пересечением всех земных меридианов в точке полюса. Каковы эти неудобства, видно хотя бы по тому, что в точке полюса даже остановившиеся часы показывают правильное время! В новой системе введены условные меридианы, пересекающиеся лишь в бесконечности. Но ведь и меридианы солнечной системы тоже пересекаются в бесконечности.
При такой системе определения положения корабля «широтой» могло бы считаться расстояние его от плоскости эклиптики. В обычных полетах внутри солнечной системы широта не будет изменяться вовсе или будет изменяться незначительно.
Определить расстояние корабля от Солнца штурман сможет различными способами. Так, например, можно просто измерять видимый диаметр Солнца, который, очевидно, уменьшается пропорционально расстоянию. Правда, этот метод не очень точен. Так, если при измерении углового диаметра Солнца (то есть угла, под которым виден этот диаметр) допустить ошибку в одну угловую секунду, то это приведет к ошибке в определении расстояния корабля от Солнца, если этот корабль находится примерно на земной орбите, равной примерно 150 тысячам километров.
Простым и довольно хорошим методом определения этого расстояния может служить измерение количества тепла или света, излучаемого Солнцем. Как известно, это количество изменяется обратно пропорционально квадрату расстояния, то есть при увеличении расстояния вдвое оно уменьшается вчетверо. Для такого измерения можно воспользоваться специальной термопарой, например, полупроводниковой, то есть термистором. Температура этой термопары, если ее сконструировать должным образом, будет зависеть только от расстояния корабля от Солнца. Правда, предварительно надо будет точно установить, не меняется ли солнечное излучение по времени, сохраняется ли оно достаточно постоянным. Иначе колебания в величине солнечного излучения будут приняты за необъяснимые колебания расстояния корабля от Солнца, которые поставят штурмана в тупик!
Долгота корабля тоже может быть определена с помощью Солнца. Только на этот раз придется следить за положением Солнца по отношению к звездам. Так как при путешествиях в пределах солнечной системы относительное расположение звезд практически не изменяется (звезды слишком далеки для этого!), то сами по себе звезды не могут служить для определения положения корабля, то есть его координат в пространстве. Но одна из звезд находится на неизмеримо меньшем расстоянии по сравнению со всеми остальными, эта звезда — наше Солнце. Поэтому при движении корабля относительное расположение Солнца среди неподвижных звезд будет изменяться, что и может служить для определения координат корабля. Неподвижная звездная сетка, покрывающая небо, и скользящее по этой сетке Солнце позволят определить и третью координату корабля — его широту, то есть отклонение от плоскости эклиптики.
Солнце — не единственное движущееся в звездной сетке небесное тело. Движутся и планеты. Поэтому они,
как и Солнце, могут служить для определения положения корабля. С их помощью координаты корабля могут быть определены даже точнее, чем с помощью Солнца. Правда, для этого должно быть точно известно положение планет в данный момент, для чего на корабле должны находиться весьма точные часы. Без таких часов астронавтам никак не обойтись, они нужны для решения многих задач космонавигации. Но остановки за этими часами не будет. Уже сейчас созданы хронометры авиационного типа, основанные, например, на использовании резонансных частот колебаний некоторых атомов, в частности, металла цезия. Конечно, такие хронометрические устройства совсем не похожи на обыкновенные часы, но зато и точность они дают необыкновенную — она сравнима с точностью часов, которые за 100 лет отстали бы на… 1 секунду! Этот «атомный хронометр», установленный на межпланетном корабле, будет иметь небольшие размеры и вес не более 15–20 килограммов. [108]108
Помимо этих часов, на корабле, вероятно, надо будет иметь часы совершенно другого рода — показывающие время на той планете, к которой совершается полет. Интересно, что в США уже созданы часы, показывающие «планетное» время. Так, например, часы могут показать, что сейчас на Марсе четверть двадцать пятого, день — 53 марта; ничего удивительного в этом не будет: сутки на Марсе равны примерно 24 часам 37 минутам, месяц — 56 дням.
Положение корабля может быть определено по одновременной фотографии двух каких-нибудь планет на фоне звезд. Можно определить и угол между двумя планетами. Если приборы, которыми пользуется штурман корабля, позволяют определять величину угла с точностью в одну угловую секунду, а его часы измеряют время с точностью в одну сотую секунды, то ошибка в определении положения корабля, путешествующего внутри орбиты Марса, не превзойдет 1600 километров. Это, конечно, очень высокая точность, вполне достаточная для целей космической навигации.
Одним из возможных и перспективных методов определения положения корабля в пространстве является использование радиоизлучения небесных тел. Радиоастрономия уже открыла много различных космических радиоизлучателей, и число их все время возрастает. Ряд подобных излучателей обладает такими особенностями излучения, что их нельзя перепутать с какими-нибудь другими. Это и позволяет определять положение корабля по местонахождению таких «ориентирных» космических радиоизлучателей. В будущем для облегчения ориентировки в космосе могут быть составлены специальные «радиокарты» мирового пространства, которые сослужат большую службу штурманам космических кораблей.
Но, как ни важно определение положения корабля в пространстве, неизмеримо более важным для штурмана является определение направления его движения и скорости в данный момент. Ведь именно это позволяет судить об отклонениях от заданного маршрута и графика полета и принимать решение о необходимых коррективах.
К сожалению, все ориентиры в мировом пространстве расположены на таком большом расстоянии, что пользоваться ими для определения величины и направления скорости, как это мы делаем, например, на Земле, оказывается очень не просто, в особенности если требуется достичь хорошей точности. Проще всего, пожалуй, пользоваться для этого уже известными приемами определения координат корабля. Ведь установив изменение координат за определенное время, например за сутки (малые промежутки времени здесь не годятся), можно определить и все, что относится к движению корабля, — его скорость, направление и т. д.
Так, например, можно фотографировать изображение Солнца, допустим, через каждые несколько часов на одну и ту же пленку. Если корабль движется в плоскости эклиптики, то все эти изображения будут расположены по одной прямой. Через определенное время, например 10 или 20 часов, можно сравнить размеры изображений Солнца в начале и конце этого промежутка времени и установить смещение изображения за это же время. Изменение величины изображения позволит судить об изменении расстояния от Солнца, а смещение изображения — об изменении долготы корабля (для определения траектории корабля необходимо не менее трех последовательных снимков). Можно вместо фотографирования измерять количество тепла или света, излучаемого Солнцем и поглощенного прибором на корабле за определенное время. Можно, наконец, воспользоваться для этой цели и движением планет.