Чтение онлайн

ЖАНРЫ

Пять возрастов Вселенной
Шрифт:

Рис. 22. На данном рисунке вклад, который различные процессы вносят в фоновое излучение Вселенной, изображен как функция времени для космологических декад от пятой до девяностой. Вертикальная ось представляет относительную энергию в излучении от нескольких источников: излучения, оставшегося от первичной Вселенной, света звезд, аннигиляции темной материи, распада протона и испарения черных дыр

По мере расширения Вселенной увеличивается длина волны излучения. Эта существенная особенность определяет будущую эволюцию и влияние космического фонового излучения. Излучение можно понимать как совокупность «частиц излучения», которые мы называем фотонами. Когда Вселенная расширяется, ее объем увеличивается, а численная плотность фотонов падает. Но при этом увеличивается также и длина волны фотонов,

а следовательно, уменьшается энергия каждого фотона. Из-за этого дополнительного увеличения длины волны, также именуемого красным смещением, фотоны в расширяющейся Вселенной теряют энергию быстрее обычных массивных частиц.

В настоящее время космическое фоновое излучение, оставшееся от Большого взрыва, — это самое интересное, с точки зрения энергии, и самое важное для космологии поле излучения. Сейчас фактическая температура этого излучения составляет три градуса Кельвина, а характеристические длины его волн — от одного до двух миллиметров. В будущем, с расширением Вселенной, длина волны этого излучения значительно увеличивается. Плоская Вселенная, например, между настоящим моментом и началом эпохи вечной тьмы вырастает в 10 60раз. Это расширение вытягивает космическое фоновое излучение до колоссальных длин волн, равных 10 41световых лет — много больше размера видимой сегодня Вселенной.

По мере старения Вселенной большую важность приобретают другие источники фонового излучения. В наше время звезды непрерывно выдают энергию в виде своего света, тогда как космическое фоновое излучение остается «в тени» из-за эффекта красного смещения. Фоновое море звездного излучения, в конечном итоге, воспреобладает над излучением, оставшимся после Большого взрыва; это произойдет в двенадцатую космологическую декаду. В относительно близком будущем это излучение будут производить преимущественно красные карлики — самые маленькие, многочисленные и долго живущие звезды. Эти относительно прохладные звезды испускают излучение с характеристической длиной волны около одного микрона — одной миллионной метра. С расширением Вселенной растягивается и это излучение, так что к началу эпохи вечной тьмы длина его волны увеличивается почти до 10 37световых лет.

Захват и аннигиляция частиц темной материи в белых карликах служит еще одним важным источником излучения в будущей Вселенной. В результате этого процесса значительная доля массы-энергии галактических гало превращается в излучение, которое становится доминирующим фоном в семнадцатую космологическую декаду. Когда в эпоху распада это излучение испускают поверхности белых карликов, длина его волны равна порядка пятидесяти микрон, или одной двадцатой миллиметра. По мере дальнейшего увеличения Вселенной длина волн этих фотонов тоже увеличивается.

Конец эпохи распада отмечен распадом протонов и превращением обычного барионного вещества в излучение. Учитывая предполагаемое время жизни протона, этот источник лучистой энергии начинает доминировать в универсальном фоне в тридцать первую космологическую декаду. Характеристическая длина волны этого излучения начинается примерно с одного дюйма и в процессе беспрестанного расширения Вселенной со временем увеличивается.

Наконец, где-то в районе шестидесятой космологической декады испаряются черные дыры, и их масса покоя, в конце концов, преобразуется в фотоны и нейтрино, которые на кое-то время преобладают в общем фоне излучения. Черные дыры с массами звезд испускают излучения с характеристической длиной волны в несколько километров, что сравнимо с их радиальным размером. Черные дыры с более высокой массой имеют, соответственно, более низкие температуры и излучение с более длинными волнами. «Чудовища», которые весят как миллиард Солнц, — черные дыры, в настоящее время обитающие в центрах активных галактик, — имеют характеристические длины волн в миллиарды километров, что приблизительно равно размеру нашей Солнечной системы. Все это излучение, ясное дело, вытягивается в процессе непрерывного расширения фонового пространства-времени Вселенной.

Тепловая смерть

Процессы, происходящие в нашей Вселенной, постепенно замедляются по мере того, как она приближается к эпохе вечной тьмы. Но остановятся ли они когда-нибудь полностью или просто замедлятся настолько, что Вселенная перестанет быть интересным местом? Можем ли мы достигнуть какого-то времени в будущем, когда не происходит совсем ничего интересного? Из-за своей тесной связи с термодинамикой идея о замедлении Вселенной до полной остановки называется тепловой смертью. Возможность тепловой смерти Вселенной волновала многих философов и ученых, начиная с середины девятнадцатого века, когда был впервые установлен второй закон термодинамики. Споры, касающиеся тепловой смерти, могут принимать различные формы. Мы используем термин классическая

тепловая смертьдля обозначения Вселенной, достигающей абсолютного термодинамического равновесия. В этом состоянии каждая точка пространства Вселенной имеет постоянную температуру. В отсутствие разницы температур не может функционировать ни один тепловой двигатель и не может выполняться работа. Не имея способности выполнить физическую работу, Вселенная «останавливается» и становится довольно безжизненным и инертным местом.

Как же происходит эта тепловая смерть? Второй закон термодинамики гласит, что общая энтропия физической системы никогда не уменьшается (в этом случае системой является вся Вселенная). Однако энтропия может оставаться постоянной и не меняться со временем. Проблема в том, что физические процессы, которые не создают энтропию, обычно не особенно интересны. Таким образом, в общем случае нам хотелось бы, чтобы Вселенная изобиловала процессами, образующими энтропию. Все физические системы имеют тенденцию достигать состояния термодинамического равновесия, соответствующего состоянию максимальной энтропии. В состоянии термодинамического равновесия все части физической системы имеют одинаковую температуру и энтропия остается строго постоянной. Таким образом, если будет достигнуто термодинамическое равновесие, во Вселенной прекратятся интересные процессы.

Современная Вселенная достаточно далека от состояния термодинамического равновесия. Фоновая температура Вселенной невысока: всего три градуса Кельвина, примерно на 270 градусов ниже точки замерзания воды (по шкале Цельсия). Этот холодный фон служит резким контрастом по сравнению с пылающими поверхностями звезд, имеющими широкий диапазон температур от четырех до сорока тысяч градусов Кельвина. Такая неравновесная природа Вселенной разрешает интересные процессы. Тепло переходит от горячих поверхностей звезд в космическое пространство, согревая планеты, управляя погодой в их атмосферах и даже позволяя зарождение и развитие жизни. Вселенная работает как гигантский тепловой двигатель. И разница температур жизненно необходима. Если бы Вселенная достигла состояния теплового равновесия и приобрела постоянную температуру в каждой точке пространства, то она утратила бы возможность выполнять работу, что исключило бы интересные процессы вроде биологической эволюции.

При обсуждении термодинамики часто возникает широко распространенное ошибочное представление — мнимый парадокс, связанный с тем, как вообще могут образоваться хоть какие-то сложные структуры, когда закон требует, чтобы энтропия возрастала всегда. Ведь энтропия — это все-таки мера беспорядка системы. Если же сложные системы являются высоко упорядоченными, как они вообще могут возникнуть, не нарушая закона об увеличении энтропии? Этот мнимый парадокс решается легко: увеличиваться должна общая энтропия системы, а энтропия одной ее части может уменьшаться, вследствие чего одна ее часть может стать высоко упорядоченной. Но если одна часть системы становится высоко упорядоченной и теряет энтропию, система в целом должна заплатить за это, в целях компенсации увеличив свою энтропию в какой-то другой части.

В контексте современной космологии температура Вселенной постоянно изменяется, в силу чего существенно варьируется и ответ на вопрос о тепловой смерти. Непрерывно расширяющаяся Вселенная никогда не достигает истинного термодинамического равновесия, т. к. она никогда не приобретает постоянной температуры. Из-за расширения фоновая температура Вселенной продолжает падать. Таким образом, Вселенная явно избегает классической тепловой смерти. Однако расширяющаяся Вселенная, в принципе, может стать чисто адиабатической, а это означает, что энтропия данной области Вселенной остается постоянной. В этом случае Вселенная все равно имеет все шансы стать скучным и мертвым местом, лишенным всяческой способности к выполнению физической работы. Последнюю возможность мы называем космологической тепловой смертью: это фактическая тепловая смерть Вселенной, даже несмотря на то, что ее температура не постоянна. Как мы отмечаем на протяжении всей этой книги, интересные космологические процессы продолжают вырабатывать энергию и энтропию в нашей Вселенной, по крайней мере, до сотой космологической декады. Так что космологическая тепловая смерть откладывается до того времени, когда Вселенная вступает в эпоху вечной тьмы.

Механизмы образования энергии и энтропии, доступные Вселенной, зависят от вида долгосрочной эволюции. В случае замкнутой Вселенной она, в конечном итоге, пережила бы повторный коллапс и закончила свой жизненный путь в Большом сжатии, поэтому вопрос о долгосрочном образовании энтропии даже бы не возник. Интересные физические процессы продолжались бы во Вселенной до самого последнего мгновения Большого сжатия. Некоторая доля иронии присутствует в терминологии этого повествования: замкнутая Вселенная может избежать оскорбительной тепловой смерти даже тогда, когда ее сложные структуры испаряются под действием сильного лучистого тепла, образующегося в результате катастрофического коллапса.

Поделиться с друзьями: