Чтение онлайн

ЖАНРЫ

Python Библиотеки
Шрифт:

Давайте рассмотрим пример создания графика с Matplotlib и сохранения его в различных форматах файлов.

В этом примере:

– Мы создаем данные и строим линейный график с использованием Matplotlib.

– Настраиваем внешний вид графика, добавляем подписи и заголовок.

– Сохраняем график в форматах PNG, PDF и SVG с помощью `plt.savefig`.

После выполнения этого кода, у вас появятся три файла (`sinus_plot.png`, `sinus_plot.pdf`, `sinus_plot.svg`), представляющие график в различных форматах. Это удобно для встраивания в отчеты, презентации или публикацию

в различных медиа.

5. Интерактивность:

В Matplotlib предусмотрены средства для создания интерактивных графиков, позволяющих взаимодействовать с данными. Это особенно полезно при работе с Jupyter Notebooks.

Давайте рассмотрим пример создания интерактивного графика с использованием Matplotlib в среде Jupyter Notebook. Для этого мы будем использовать функцию `plotly` для добавления интерактивности.

```python

import matplotlib.pyplot as plt

import numpy as np

import plotly.graph_objects as go

from IPython.display import display, HTML

# Создаем данные для примера

x = np.linspace(0, 2 * np.pi, 100)

y = np.sin(x)

# Строим линейный график с Matplotlib

plt.plot(x, y, label='Синус')

plt.xlabel('X-ось')

plt.ylabel('Y-ось')

plt.title('Интерактивный график синуса')

plt.legend

# Преобразуем Matplotlib график в интерактивный с использованием Plotly

fig = go.Figure

fig.add_trace(go.Scatter(x=x, y=y, mode='lines', name='Синус'))

# Настраиваем макет

fig.update_layout(

title='Интерактивный график синуса',

xaxis=dict(title='X-ось'),

yaxis=dict(title='Y-ось'),

)

# Отображаем интерактивный график внутри ячейки Jupyter Notebook

display(HTML(fig.to_html))

```

В этом примере:

Мы создаем данные и строим линейный график с Matplotlib.

– Затем мы используем Plotly, чтобы преобразовать этот график в интерактивный. Обратите внимание, что для этого требуется установка библиотеки Plotly (`pip install plotly`).

– Используется `display(HTML(fig.to_html))`, чтобы отобразить интерактивный график внутри ячейки Jupyter Notebook.

Таким образом, вы можете взаимодействовать с данными, изменять масштаб, выделять области и другие действия прямо внутри Jupyter Notebook, что делает визуализацию данных более удобной и информативной.

6. Встроенные цветовые карты:

Matplotlib предоставляет широкий выбор цветовых карт для лучшего представления данных. От дискретных цветовых карт до плавных переходов, библиотека предоставляет разнообразные опции.

Давайте рассмотрим пример использования различных цветовых карт в Matplotlib. В этом примере мы создадим тепловую карту, используя различные цветовые карты для лучшего представления данных.

```python

import matplotlib.pyplot as plt

import numpy as np

# Создаем данные для тепловой карты

data = np.random.random((10, 10))

# Список цветовых карт

для использования

colormaps = ['viridis', 'plasma', 'magma', 'inferno', 'cividis']

# Создаем подграфики для каждой цветовой карты

fig, axes = plt.subplots(1, len(colormaps), figsize=(15, 3))

# Строим тепловую карту для каждой цветовой карты

for i, cmap in enumerate(colormaps):

im = axes[i].imshow(data, cmap=cmap)

axes[i].set_title(f'Цветовая карта: {cmap}')

fig.colorbar(im, ax=axes[i], orientation='vertical', fraction=0.046, pad=0.04)

# Регулируем расположение графиков

plt.tight_layout

# Показываем графики

plt.show

```

В этом примере:

– Мы создаем случайные данные для тепловой карты с использованием NumPy.

– Затем мы строим тепловые карты для различных цветовых карт (`viridis`, `plasma`, `magma`, `inferno`, `cividis`).

– Для каждой цветовой карты добавляем шкалу цветов.

Этот пример демонстрирует разнообразие цветовых карт в Matplotlib, отличающихся как по цветовому спектру, так и по контрасту. Выбор подходящей цветовой карты может улучшить восприятие данных на графиках.

В Matplotlib существует множество цветовых карт. Вы можете получить актуальный список цветовых карт, вызвав функцию `plt.colormaps`.

Практическое задание

Задача: Мониторинг изменений температуры на глобальной карте

Описание:

Вам предоставлены данные о температуре в различных регионах мира за последние несколько лет. Ваша задача – визуализировать эти данные на глобальной карте с использованием цветовых карт для наглядного отображения изменений температуры.

1. Подготовка данных:

– Загрузите данные о температуре в различных регионах мира. Данные могут включать временные метки, широту, долготу и значения температуры.

2. Выбор Цветовой Карты:

– Выберите цветовую карту, которая лучше всего подходит для отображения изменений температуры. Например, можно использовать цветовую карту типа `coolwarm` для выделения разницы между холодными и теплыми областями.

3. Построение Глобальной Карты:

– Используя библиотеку Matplotlib, постройте глобальную карту, на которой цветами будет представлена температура в различных регионах. Широта и долгота могут быть представлены на осях X и Y, а цветом можно отображать температурные значения.

4. Добавление Интерактивности:

– Добавьте интерактивность к карте, чтобы пользователи могли навигировать по временной оси и наблюдать изменения температуры в различные периоды.

5. Анимация (опционально):

– Если у вас есть временные данные, рассмотрите возможность добавления анимации для визуализации динамики изменений температуры в течение времени.

6. Сохранение и Публикация:

– Сохраните визуализацию в удобных форматах (например, PNG или GIF) для возможности вставки в презентации, отчеты или веб-страницы.

Поделиться с друзьями: