Чтение онлайн

ЖАНРЫ

QNX/UNIX: Анатомия параллелизма
Шрифт:

Общий вид прототипов каждой из двух групп атомарных операций следующий:

void atomic_*(volatile unsigned *D, unsigned S);

unsigned atomic_*_value(volatile unsigned *D, unsigned S);

где вместо

*
должно стоять имя одной из пяти операций (таким алгоритмом и обеспечивается 10 различных атомарных функций):

add
— добавить численное значение к операнду;

sub
— вычесть численное значение из операнда;

clr
— очистить битыв значении
операнда (выполняется побитовая операция (
*D) &= ~S
);

set
— установить битыв значении операнда (выполняется побитовая операция (
*D) |= S
);

toggle
— инвертировать битыв значении операнда (выполняется побитовая операция (
*D) ^= S
);

D
— именно тот объект, над которым осуществляется атомарная операция;

S
— второй операнд осуществляемой операции.

Две формы атомарных функций для каждой операции отличаются тем, что первая из них выполняет операцию без возврата значения, а вторая возвращает значение, которое операнд

D
имел до выполнения операции (т.e. прежнее значение, как это делают, например, префиксные операции инкремента
++D
и декремента
– -D
, в отличие от постфиксных
D++
и
D--
).

Зачем нужны две формы для операции? Техническая документация QNX утверждает, что вторая форма может выполняться дольше. Справедливость этого утверждения и насколько дольше выполняется вторая форма, мы скоро увидим на примерах.

Итак, у нас есть 10 функций для выполнения пяти атомарных операций:

atomic_add atomic_add_value

atomic_sub atomic_sub_value

atomic_clr atomic_clr_value

atomic_set atomic_set_value

atomic_toggle atomic_toggle_value

Как используются атомарные операции? Обычно для предотвращения одновременного изменения некоторого счетчика индекса мы вынуждены создавать критическую секцию, обозначая ее, скажем, операциями над мьютексом. В частности, в следующем примере нам необходимо из различных потоков последовательно дописывать некоторые байтовые результаты в единый буфер:

// глобальные описания, доступные всем потокам

const unsigned int N = ...

uint8_t buf[N];

// индекс текущей позиции записи

unsigned int ind = 0;

// общий мьютекс, доступный каждому из потоков

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

...

// выполняется в каждом из потоков:

uint8_t res[M]; // результат некоторой операции

unsigned int how = ... // реальная длина этого результата

pthread_mutex_lock(&mutex);

memcpy((void*)buf + ind, (void*)res, how);

ind += how;

pthread_mutex_unlock(&mutex);

Используя

атомарные операции, мы можем этот процесс записать так (все глобальные описания остаются неизменными):

// глобальные описания, доступные всем потокам

...

// индекс текущей позиции записи

volatile unsigned int ind = 0;

...

// выполняется в каждом из потоков:

uint8_t res[M]; // результат некоторой операции

unsigned int how = ... // реальная длина этого результата

memcpy((void*)buf + atomic_add_value(ind, how), (void*)res, how);

Или даже так:

// глобальные описания, доступные всем потокам

...

// указательтекущей позиции записи:

volatile unsigned int ind = (unsigned int)buf;

...

// выполняется в каждом из потоков:

memcpy((void*)atomic_add_value(ind, how), (void*)res, how);

В последнем случае это, конечно, трюкачество, построенное на том, что в 32-разрядной архитектуре представления указателя и переменной

unsigned int
совпадают, но это «работающее трюкачество» и работающее иногда весьма эффективно.

Техника применения атомарных операций оказывается крайне удобной, например, при осуществлении вывода, часто диагностического, из различных потоков. Положим, нам нужно в каждом из многих потоков выводить диагностическую строку при достижении ими определенной точки исполнения:

cout << "Это вывод потока " << pthread_self << endl;

Но так делать нельзя: при таком решении у нас появляются 2 проблемы, одна из которых очевидна, а другая — не очень:

1. Выводы разных потоков могут «смешиваться»; более того, за счет буферизации вывода некоторые «рваные» фрагменты мы будем наблюдать дважды. Одним словом, наш вывод окажется полностью «нечитабельным».

2. При осуществлении вывода в контексте потока почти наверняка в процессе вывода будут выполняться системные вызовы, которые потребуют новой диспетчеризации и приведут к вытеснению исходного потока. При этом порядок передачи управления от потока к потоку при наличии отладочного вывода будет отличаться от порядка при его отсутствии. А это, наверное, не совсем то, что мы ожидали. В результате при наличии отладочного вывода мы можем наблюдать совсем не ту картину, для изучения которой этот вывод, собственно, и предназначен.

Эти эффекты не связаны с какой-то конкретной формой вывода, такой как вывод в поток, показанный выше; точно так же будет вести себя и традиционный вызов

printf(...)
.

Проблема очень просто решается, если вместо непосредственного вывода из потоков последовательно сбрасывать все сообщения в промежуточный буфер, который будет выводиться в те периоды времени программы, когда запись в него не производится:

const int N = ... , M = ...;

char buf[N];

Поделиться с друзьями: