Радиоэлектроника-с компьютером и паяльником
Шрифт:
Рис. 39. Простая электрическая цепь Мастер КИТ NK143 «Юный электротехник»
Здесь миниатюрная лампочка накаливания присоединяется через клеммную колодку к батарее. В результате образуется замкнутая последовательная электрическая цепь — контур. Его можно мысленно обойти от положительного полюса батареи «+» через соединительный провод, нить накала, провода, идущие к отрицательному полюсу «-», и, пройдя «внутри батареи», вернуться к исходной точке «+».
Направление этого обхода принимается за положительное направление тока в данной цепи.
Введя некоторую величину, названную сопротивлением, Ом получил закон, который, нисколько не умаляя его заслуг, можно было бы назвать «законом водопроводчиков». Авторская формулировка была весьма витиевата: «Величина тока в гальванической цепи пропорциональна сумме всех напряжений и обратно пропорциональна сумме всех приведенных длин». Под «приведенными длинами» и скрывалось сопротивление. Теперь же, в простейшем случае, не мудрствуя лукаво, делят «вольты» на «амперы» и получают «омы» или составляют другие тождественные комбинации из названных ученых господ. Эти три господина всегда вместе, как три мушкетера: «Один за всех и все за одного». Недаром в «электрической азбуке», вместо «аз, буки, веди» значится: «ампер, вольт, ом». Это настолько ходовые величины, что есть даже комбинированный прибор: «ампер-вольт-омметр», название которого сокращают панибратски до «авометра».
Виртуальный эксперимент
Купите себе удобный стул. Вам наверняка придется много сидеть.
Люк Эхерн. «Создание компьютерных игр»
Проведем теперь компьютерный анализ процессов в рассмотренной выше цепи. Для этого составим ее модель из источника и лампочки, воспользовавшись набором элементов компьютерной программы EWB. Этот эксперимент, проводимый на компьютере, назовем виртуальным (воображаемым), он будет моделировать поведение реальной цепи. Опишем кратко последовательность виртуального эксперимента.
В программе EWB реализован стандартный многооконный интерфейс с ниспадающими и разворачивающимися меню. После установки программы возникает рабочее поле для сборки схем и пиктограммы с рабочими инструментами и компонентами схем (рис. 40).
Рис. 40. Основное окно программы EWB с дополнительными окнами выбора компонентов
Нажатием левой кнопки мыши (ЛКМ) здесь уже открыты отдельные схемные наборы (как бы ящики конструктора), из которых на рабочее поле помещены некоторые компоненты (батарея, лампа и мультиметр).
Составим принципиальную схемную модель эксперимента (рис. 41).
Рис. 41. Виртуальная модель простой электрической цепи
Для этого откроем на панели компонентов пиктограмму группы Source (источники)
Затем, аналогично, переносим в центр экрана из раздела Basic (основные компоненты)
Упорядочим расположение выбранных компонентов на экране, если оно не соответствует воображаемой схеме. Для этого ЛКМ выделяем необходимый компонент и буксируем его в нужное положение. Возможно, на этом этапе потребуется изменить пространственную ориентацию компонентов. В данном конкретном случае удобнее повернуть лампу на 90° против часовой стрелки: выделим лампу (однократным нажатием ЛКМ), при этом она примет активный (красный по цвету) вид и нажмем на кнопку (пиктограмму) Rotate (вращение)
Далее выполняем соединения компонентов. Лучше всего, как и при сборке реальных цепей, начать с положительного полюса «+» батареи. Устанавливаем стрелку курсора в верхнюю часть вывода: там появляется жирная черная точка — символ неразъемного соединения. Нажимаем ЛКМ и кратчайшим путем ведем линию-резинку к крайнему левому выводу переключателя. После того как там возникнет символ соединения, отпускаем ЛКМ. На экране возникает изображение соединительного проводника в виде двух ортогональных отрезков. Аналогично соединяем любой правый вывод переключателя с верхним выводом лампы и ее нижний вывод с отрицательным полюсом «-» батареи.
Общий чертеж принципиальной схемы выполнен (см. рис. 41), и теперь надо отредактировать параметры (свойства) используемых компонентов.
Начинаем с батареи. Дважды щелкаем на ней ЛКМ. На экране появляется подменю (рис. 42) Battery Properties (свойства батареи).
Рис. 42. Окно редактирования свойств батареи
Выбираем в этом подменю Value (значение) и набираем в соответствующем окошке цифру 3, оставляя единицу измерения V, т. е. вольт. Затем выделяем Label (обозначения) и печатаем буквенный символ ЭДС — Е и подтверждаем сделанный выбор свойств нажатием на кнопку «ОК».
Переходим к лампе. Действуя аналогично предыдущему, выделяем лампу, вызывая диалоговое окно для редактирования ее параметров. Набираем в окошке Label «Lamp». Устанавливаем в позиции Value РМАХ (максимальная мощность) 0,91 W (ватт), что соответствует произведению номинального напряжения конкретной реальной лампочки 3.5 В на ее номинальный ток 0,26 А (эти параметры указаны на ее цоколе). Здесь же набираем 3.5 в окошке VMAX (максимальное напряжение). Обратите внимание на разделители целой и дробной части: в тексте программы это не запятая, а точка.
Выбор численного значения параметров читатель может сделать самостоятельно для другой конкретной или воображаемой батареи и лампочки. При необходимости можно, действуя аналогично, переименовать позиционное обозначение переключателя, перейдя соответственно к другой клавише, которая им управляет, например [X] вместо [Space], принимаемой по умолчанию.
Теперь проведем собственно эксперимент на собранной схеме. Устанавливаем в виртуальном выключателе Activate simulation (включение моделирования)