Ракетные двигатели
Шрифт:
Ближайшей задачей является подыскание жидких топлив, обеспечивающих большую скорость истечения и, следовательно, удельную тягу.
Новые возможности открылись бы при использовании некоторых металлов — алюминия, магния и других — в качестве горючего, причем можно было бы использовать теплоту реакции их окисления, т. е. соединения с кислородом, или же реакции соединения с фтором [19] , которая сопровождаемся выделением большого количества тепла.
Большие заслуги в области исследования вопроса о применении металлов в качестве горючего для ракетных двигателей и сама идея о таком использовании металлов принадлежат рано умершему советскому ученому Цандеру. Цандер показал также, что решение этой проблемы значительно подвинуло бы вперед дело создания космического ракетного корабля, так как позволило бы использовать часть металлической конструкции самой ракеты в качестве горючего. Это, естественно, увеличило бы конечную скорость корабля, так как означало бы увеличение отбрасываемой массы и уменьшение конечной массы ракеты. Цандер предложил несколько конструкций ракеты, в которых
19
Элемент из так называемой группы галлоидов, в которую помимо фтора входят хлор, иод, бром.
Фиг. 44. Испытание ЖРД на топливе с добавкой алюминия
Совершенно новые возможности открыло бы применение однокомпонентного, так называемого атомарного топлива. Дело в том, что для разложения молекул разных веществ на атомы обычно приходится затрачивать большое количество тепла или другой энергии (например электрической), а при обратном соединении атомов в молекулы это количество тепла снова выделяется. Так, молекулы водорода, как известно, состоящие из двух атомов, можно расщепить с образованием атомарного водорода пропусканием водорода через вольтову дугу. Сразу же вслед за этим атомы водорода вновь соединяются в молекулы с выделением большого количества тепла, вследствие чего водород приобретает весьма высокую температуру. Этот процесс используется в так называемой атомно-водородной сварке. Если бы можно было воспользоваться атомарным водородом в качестве топлива для ракетных двигателей, то можно было бы получить исключительно большие скорости истечения, достигающие 10 000 м/сек, т. е. в четыре-пять раз больше существующих скоростей. Другим преимуществом этого топлива является то, что при его использовании нет нужды во втором компоненте — окислителе. Использование атомарного водорода означало бы по существу использование электрической энергии для создания тяги, так как разложение молекул водорода на атомы происходит при затрате электрической энергии. Однако практически использовать атомарный водород в качестве топлива в ракетном двигателе пока не удается, так как соединение атомов водорода в молекулы происходит сразу же, через сотые доли секунды, после их расщепления в вольтовой дуге. Очевидно, что сначала надо найти способ сохранения атомарного водорода, либо способ расщепления молекул водорода в самой камере сгорания, например, с использованием для этой цели атомной (ядерной) энергии. Имея в виду, что жидкий водород имеет очень небольшой удельный вес (около 0,07), вследствие чего для его хранения потребовались бы баки большого объема, могло бы оказаться целесообразным применение в качестве атомарного топлива других, более плотных, веществ. Например, можно было бы применить обычную воду, каждая молекула которой, как известно, состоит из двух атомов водорода и одного атома кислорода. Удельная тяга при этом была бы, правда, ниже, чем в случае атомарного водорода и составила примерно 3/4 от последней.
Усовершенствование существующих конструкций ЖРД обычно характеризуется увеличением давления в камере сгорания от 15–20 ата, принятых в настоящее время, до 30–50 и более, вплоть до 100 ата, так как при этом уменьшаются размеры и улучшается работа двигателя.
Увеличение абсолютных значений тяги, т. е. мощности существующих ЖРД, не встречает принципиальных трудностей. Двигатели с тягой в 50 и даже 100 тонн могут быть созданы уже при современном уровне техники. Так, на фиг. 46 показана фотография камеры сгорания (с змеевиком охлаждения) опытного 100-тонного двигателя. Разрез модели двигателя с такой системой охлаждения показан на фиг. 47.
Одним из чрезвычайно серьезных условий дальнейшего развития ЖРД является улучшение охлаждения стенок камеры сгорания и сопла, а также подыскание для них более жаростойких материалов; без этого невозможно дальнейшее повышение температуры газов в камере сгорания, а следовательно, и удельной тяги двигателя. Одним из перспективных методов охлаждения является сравнительно новый способ, получивший название «охлаждения выпотеванием». В этом случае стенки изготовляются из пористого материала и через эти мельчайшие поры продавливается снаружи внутрь камеры или сопла вода или иная охлаждающая жидкость либо газ (например, азот), которые затем образуют защитный слой на внутренней поверхности стенки (эта поверхность как бы «потеет»). Температура стенки при этом способе охлаждения оказывается значительно более низкой, чем при других известных способах.
Фиг. 46. Система охлаждения камеры сгорания опытного ЖРД с тягой 100 тонн.
Наконец, следует указать и на те огромные перспективы, которые открывает возможность применения в ракетных двигателях энергии, выделяемой при распаде атомов — ядерной энергии. Правда, непосредственная скоростная энергия частиц, вылетающих с огромной скоростью (около 30 000 км/сек!) из атомов при их распаде вряд ли будет использована. Вероятнее всего,
будет использована тепловая энергия, выделяющаяся в «атомном котле»; как известно, эта энергия в миллионы раз больше тепла, выделяющегося при сгорании. В этом случае специальные атомные реакторы могли бы заменить камеру сгорания ракетного двигателя, повышая температуру какого-нибудь рабочего тела, которое уже и будет создавать реактивную тягу, вытекая с огромной скоростью из двигателя в атмосферу. В качестве такого рабочего тела целесообразно применить вещества с малым молекулярным весом. При прочих равных условиях эти вещества вытекают из двигателя с большей скоростью; идеальным в этом отношении был бы водород, теоретическая скорость истечения которого при температуре 3700 °C равна 7000 м/сек. Одним из чрезвычайно серьезных препятствий в применении атомной энергии для ракетных двигателей, как и для других авиационных двигателей, является необходимость защиты экипажа ракетного корабля от вредного действия радиоактивного излучения, сопровождающего распад ядер атомов. Для беспилотных ракет это препятствие, очевидно, отпадает.
Фиг. 47. Модель жидкостно-реактивного двигателя.
Какие же возможности открывает, применение новых, усовершенствованных ракетных двигателей?
Прежде всего нужно подчеркнуть, что и в настоящее время использованы далеко не все возможности существующих ракетных двигателей. Взглянем на фиг. 48, на которой показаны траектории полета различных ракет. Первая кривая представляет собой траекторию полета исходной ракеты (такую же, как на фиг. 29). В качестве исходной ракеты принята ракета, изображенная на фиг. 26 и 27; двигатель ее был нами подробно описан. Вторая кривая показывает траекторию полета той же ракеты, но снабженной крыльями, как у самолета. Только из-за этого дальность полета ракеты увеличивается с 290–300 до 550–560 км.
Значительно большие возможности открывает применение так называемых составных ракет, т. е. комбинаций из двух или большего числа обычных ракет. После выгорания топлива в одной из таких ракет она автоматически отделяется, а оставшиеся ракеты продолжают дальнейший полет. Затем начинает работать двигатель следующей ракеты, которая потом также отделяется, и т. д. (фиг. 49). Идея использования таких составных ракет принадлежит Циолковскому, который называл их «ракетными поездами». Легко видеть, что конечная скорость последней из ракет, составляющих такой «поезд», будет больше, чем была бы скорость всего «поезда», благодаря уменьшению ускоряемой массы ракеты. Следует отметить, что Циолковский разработал наряду с составной ракетой и идею переливания топлива из одной ракеты в другую в полете, что также открывает большие возможности и в некоторых отношениях даже превосходит систему «поезда».
Фиг. 48. Траектории полета различных ракет.
1 — исходная ракета; 2 — исходная ракета с крыльями; 3 — составная ракета (1-й вариант); 4 — составная ракета (2-й вариант).
Третья и четвертая кривые на фиг. 48 отвечают составной ракете, состоящей из двух ракет. Одна из этих ракет, задняя, т. е. отделяющаяся после того, как ее двигатель выработает все топливо, представляет собой большую бескрылую ракету с тягой около 180 тонн. Другая ракета, продолжающая полет, такая же, как и крылатая ракета, описанная выше. Общая длина такой составной ракеты (фиг. 50) превышает 30 м, а вес равен почти 100 тонн, из них около 2/3 составляет топливо.
Полет составной ракеты можно осуществить разными способами. Третья кривая соответствует тому случаю, когда составная ракета вначале поднимается вертикально вверх, причем этот подъем длится до тех пор, пока двигатель задней бескрылой ракеты не остановится из-за выгорания всего топлива этой ракеты. После этого задняя ракета автоматически отделяется и опускается с помощью парашюта на землю, и начинает работать двигатель второй, крылатой, ракеты. Эта ракета совершает горизонтальный полет на постоянной высоте, равной примерно 24 км, со скоростью 2600 км/час, так что общая дальность полета составляет около 2500 км, а его продолжительность 70 минут.
По другому варианту (четвертая кривая) крылатая ракета после отделения бескрылой продолжает набор высоты. После остановки двигателя этой ракеты из-за выработки топлива она совершает свободный полет, полого планируя с помощью крыльев в нижних, более плотных слоях атмосферы. В этом случае ракета достигает высоты около 300 км, причем она покрывает за 45 минут расстояние немногим менее 5000 км. При таком полете будет развиваться скорость свыше 12 000 км/час, что значительно превышает максимальные скорости, достигнутые в настоящее время.
Обращает на себя внимание исключительно большое влияние, оказываемое крыльями на дальность полета ракеты. Крылатые ракеты даже при современном уровне развития ракетной техники могут покрывать огромные расстояния.
Применение же улучшенных топлив, связанное со значительным увеличением удельной тяги двигателей, открывает здесь новые широчайшие возможности.
Фиг. 49.Схема составной (тройной) ракеты
Уже сейчас представляется принципиально возможным создание ракетного самолета, который мог бы совершить беспосадочный полет до любой цели на земном шаре и возвратиться обратно. Конечно, этому должна предшествовать еще огромная научно-исследовательская и конструкторская работа, должны быть преодолены многие трудности и решены серьезные инженерные задачи.