Расширяя границы Вселенной: История астрономии в задачах
Шрифт:
Идеи Коперника долго ждали научного и, тем более, общественного признания. Этому препятствовало не только психологическое недоверие обывателей, каждый день видящих движение Солнца и звёзд вокруг неподвижной Земли, но и вполне резонные возражения образованных людей. Движение Земли вокруг Солнца должно приводить к параллактическому смещению ближних звёзд в течение года, которое (хотя и были попытки его наблюдать) не отмечалось, да и не могло быть замечено в XVI веке по причине своей малости. Параллаксы звёзд были обнаружены только в первой половине XIX столетия.
Важные свидетельства в пользу гелиоцентрической системы Коперника дали первые телескопические наблюдения неба, проделанные Галилео Галилеем (1564–1642). Он увидел в свои ещё несовершенные зрительные трубы рельеф
Следующим этапом в создании научной картины мира стали труды Иоганна Кеплера (1571–1630), открывшего принципиально важные для астрономии законы планетных движений. Впервые было доказано, что планеты движутся не по круговым, а по эллиптическим орбитам; что скорость движения планеты закономерно зависит от её расстояния от Солнца; была найдена связь между периодами обращения планет и большими полуосями их орбит. Законы Кеплера носили кинематический характер: они устанавливали закономерности движения планет, но не вскрывали их причину. Открытие законов планетных движений оказалось возможным благодаря использованию Кеплером многолетних астрометрических наблюдений Марса, проведённых знаменитым датским астрономом Тихо Браге (1546–1601).
Выдающийся английский физик, астроном и математик Исаак Ньютон (1643–1727) завершил создание классической астрономии, подвёл теоретическую основу под эмпирические закономерности, найденные его предшественниками. Ньютон из открытого им закона всемирного тяготения не только вывел законы планетных движений, но и смог обобщить и уточнить их. Первый обобщённый закон Кеплера утверждает, что одно космическое тело может двигаться в поле тяготения другого космического тела по одному из пяти конических сечений: окружности, эллипсу, параболе, гиперболе и прямой линии. Второй закон, как показал Ньютон, является следствием закона сохранения момента импульса. В математическое выражение третьего обобщённого закона вошли массы обоих гравитационно взаимодействующих тел, что позволило использовать этот закон для определения масс космических объектов.
Полученные Ньютоном обобщения законов планетных движений превратили эти законы в динамические, поэтому Ньютона по праву считают основоположником небесной механики. Но он был не только выдающимся теоретиком, но и незаурядным экспериментатором. Открытие им дисперсии света положило начало чрезвычайно плодотворному методу спектрального анализа, позволившему измерять температуру звёзд, изучать физические условия и химический состав небесных объектов. Ньютон изобрёл телескоп — рефлектор, свободный от хроматической аберрации. Ныне все крупные телескопы — рефлекторы.
Звёздная астрономия и астрофизика
Задачей звёздной астрономииявляется изучение пространственного расположения и движения отдельных звёзд и звёздных ансамблей — скоплений, галактик и т. п. Первый шаг в этом направлении сделал Галилей, открыв с помощью телескопа звёздную структуру Млечного Пути.
В конце XVIII века существенный вклад в изучение звёздных систем внёс Вильям Гершель (1738–1822), впервые применив статистический метод к изучению Галактики. Он установил, что наша Галактика имеет конечные размеры, и даже довольно точно определил степень сплюснутости её формы (1:5). Он также первым выдвинул предположение о существовании крупномасштабной структуры мира галактик, заметив неоднородность их распределения на небе.
Важным событием в звёздной астрономии стали первые измерения звёздных параллаксов (В. Струве — Лиры, Т. Гендерсон — Кентавра, Ф. В. Бессель — 61 Лебедя). В середине XIX века ирландский астроном У. Парсонс при помощи сконструированного им рефлектора открыл спиральную структуру некоторых внегалактических туманностей.
Астрофизикаизучает физические свойства космических тел. Методы астрофизики основаны
на достижениях экспериментальной и теоретической физики. Появление этой новой астрономической наукиГигантский телескоп рефлектор Уильяма Парсонса, сооруженный в 1845 г. Металлическое главное зеркало диаметром 182 см имело фокусное расстояние 17 м.
относят к середине XIX века, когда при исследовании космических тел стали использовать фотографию и спектроскопию. Следует отметить, однако, что физический подход для изучения природы космических тел стал применяться гораздо раньше. Так, ещё в 1761 г. русский учёный — энциклопедист М. В. Ломоносов первым обнаружил преломление солнечного света у поверхности Венеры и дал правильное качественное толкование наблюдаемому явлению, предположив наличие у планеты плотной атмосферы. Он же в образной форме дал близкое к действительности описание физических процессов, происходящих в атмосфере Солнца.
Естественно, что первым объектом исследования для астрофизиков стало наше светило, дающее мощный поток излучения. Немецкий физик Г. Р. Кирхгоф (1824–1887), применив изобретённый им и Р. Бунзеном метод спектрального анализа, доказал, что у Солнца есть атмосфера, более холодная, чем видимая поверхность светила — фотосфера. По линиям поглощения в спектре Солнца оказалось возможным определить химический состав его атмосферы. Один из основоположников астроспектроскопии У. Хёггинс (1824–1910) доказал единую природу Солнца и звёзд. Французский астроном П. Жансен (1824–1907) начал изучать методом спектрального анализа химический состав атмосфер планет. П. Жансен и английский астроном Дж. Н. Локьер (1836–1920) независимо друг от друга открыли спектроскопический способ наблюдения хромосферы и протуберанцев на Солнце вне солнечного затмения.
Астрономия XX века
Бурное развитие астрономии в XX столетии основывалось на двух «китах» — новых крупных телескопах и чувствительных приёмниках излучения во всех диапазонах волн, а также на достижениях теоретической физики. В начале столетия датский астроном Эйнар Герц- шпрунг (1873–1967) и американский астроном Г. Н. Рассел (в некоторых книгах — Рессел; 1877–1957) установили важную закономерность: светимость большинства звёзд определяется их спектральным типом, отражающим температуру поверхности. Построенная ими диаграмма «спектр — светимость» позволила установить существование звёзд — гигантов и звёзд — карликов. Диаграмма Герцшпрунга — Рассела имеет большое космогоническое значение: положение на ней звезды в первую очередь определяется её массой и возрастом.
Теоретический подход в астрофизике позволил по данным наблюдений изучать физические условия в звёздных атмосферах и строить модели внутреннего строения звёзд (К. Шварцшильд, А. С. Эддингтон, Дж. Джинс). Вторая четверть XX столетия была отмечена решением проблемы источника энергии звёзд. Обсуждавшиеся ранее метеоритная, контракционная и аннигиляционная гипотезы, а также гипотеза радиоактивного распада были отвергнуты. Успехи ядерной физики и накопленные астрономами данные о звёздах позволили убедительно показать, что источником энергии звёзд в течение большей части их жизни служит термоядерный синтез гелия из водорода (подробнее см.: Сурдин, 1999).
XX век характеризуется рождением новой симбиотической науки — космонавтики,открывшей небывалые возможности для исследования Вселенной космическими аппаратами. Общепризнанным основателем этого направления человеческой деятельности, много сделавшим для его развития, был гениальный русский учёный К. Э. Циолковский; его научное наследие насчитывает около 600 работ. Вся вторая половина столетия прошла под знаком интенсивного развития практической космонавтики. 4 октября 1957 г. в нашей стране был запущен первый в мире искусственный спутник Земли. 12 апреля 1961 г. состоялся первый пилотируемый космический полёт Ю. А. Гагарина.