Чтение онлайн

ЖАНРЫ

Рассказы о биоэнергетике
Шрифт:

Итак, опыт с «привязанной» бактерией однозначно доказал, что происходит вращение жгутика. Но что за еила заставляет его вращаться?

Отвлечемся на момент от бактерий и обратимся к более высокоорганизованным формам живых существ, также движущихся с помощью жгутиков. Вот, например, сперматозоид/Источник энергии, используемый его двигательным аппаратом, давно уже не составляет секрета. Это АТФ, гидролизуемый сократительным белком — АТФазой, близким по свойствам к тому, который содержится в мышцах и тоже использует "нергию АТФ для совершения механической работы.

Распад АТФ приводит в движение жгутик сперматозоида. Так, может быть, и жгутик бактерии вращается за счет энергии АТФ?

Стали искать сократительные белки —

АТФазы у бактерий и в конце концов нашли. Правда, флагеллин, белок бактериального жгутика, не относится к их числу. Все попытки принудить флагеллин к гидролизу АТФ окончились полной неудачей. Но может быть, АТФаза сидит где-то в других частях «мотора», например в дисках? Однако и это предположение пока не подтвердилось.

А стоит ли вообще проводить какие-то аналогии между флагеллами бактерий и жгутиками высших? Ведь бактериальная флагелла гораздо мельче, да и устроена она несравненно проще: это тяж из структурного белка флагеллина, не обладающего какой-либо каталитической активностью. Жгутик сперматозоида гораздо более сложное образование: внутри мембранного чехла одиннадцать трубочек, вытянутых вдоль длинной оси жгутика, есть там сократительные белки и целое хозяйство ферментов.

Ну что ж, давайте откажемся от гипотезы относительно общности механизмов движения бактерии и сперматозоида, но не рискуем ли мы в этом случае вовсе остаться без гипотезы? Ведь все известные до сего времени механизмы биологической подвижности основывались на использовании энергии АТФ сократительными белками.

Протонный потенциал движет бактерией

В 1956 году, то есть за пять лет до публикации своей знаменитой гипотезы, Митчел напечатал заметку о возможных механизмах движения флагеллярных бактерий. Один из них мы опустим за ненадобностью (он казался фантастичным и оказался таковым). Но вот другой Митчелов вариант лег в основу нашей рабочей гипотезы спустя «каких-то» 18 лет.

Митчел обратил внимание на то, что «кирпичи» флагеллина в бактериальном жгутике уложены таким образом, что в поперечном сечении жгутик имеет вид толстостенной полой трубки. Что, если, подумал Митчел, эта трубка — гигантский канал, ведущий из бактерии во внешнюю среду? По такому каналу можно было бы, например, выпускать из бактерии ионы К+, которые каким-то образом аккумулируются бактерией, поступая внутрь клетки через всю ее поверхность. А может быть, это канал для входа в клетку ионов Н+ (!), откачивающихся через клеточную поверхность? По Митчелу, в любом из этих случаев вдоль наружной поверхности клетки должен возникать ток ионов, который мог бы приводить в движение бактерию.

Протонный потенциал движет бактерией

В 1974 году Дж. Адлер и его сотрудники опубликовали в США работу по движению мутанта кишечной палочки, лишенного способности синтезировать АТФ за счет дыхания. У мутанта включение дыхания никак не влияло на количество АТФ, который образовывался исключительно за счет брожения. Казалось, дыхание идет на холостом ходу и бесполезно для клетки. К своему удивлению, авторы статьи обнаружили, что это «холостое» дыхание способно поддерживать движение мутантной бактерии.

Они удивились еще больше, когда измерили скорость движения бактерий, обработанных арсенатом. Такая обработка снижала количество АТФ в клетке до практически неизмеримого уровня. И тем не менее лишенные АТФ бактерии отлично двигались, если в среде был кислород и протекал процесс дыхания.

Остановить бактерии удалось, добавив протонофор.

Авторы заключили, что непосредственным источником энергии для движения бактерий служит не АТФ, а какой-то другой компонент, образуемый дыханием. («Промежуточный продукт окислительного фосфорилирования», — писали Адлер и его коллеги,

не искушенные в премудростях хемиосмотической гипотезы.)

В то время концепция протонного потенциала была далеко не общепринятой даже в кругу биоэнергетиков. Поэтому вряд ли стоит удивляться, что микробиолог Адлер сформулировал свой вывод в рамках старой схемы, предполагавшей существование каких-то особых химических соединений, образуемых дыханием и потребляемых АТФ-синтетазой.

Однако для меня тогда уже было ясно, что у этих двух систем есть только один общий продукт — протонный потенциал. Стало быть, мутант кишечной палочки, исследованной американскими микробиологами, образовывал за счет дыхания протонный потенциал, который, по-видимому, и служил источником энергии для движения бактериальной клетки. Именно такое толкование опытов Адлера я предложил, выступая летом 1975 года на очередном съезде европейских биохимиков.

В подтверждение своей правоты я привел данные опытов, поставленных А. Глаголевым на пурпурной фотосинтезирующей бактерии. Испытывая различные комбинации ферментных ядов и разобщителей-протонофоров, Глаголев показал, что скорость движения микроба пропорциональна величине протонного потенциала, а не количеству АТФ. Это был важный шаг вперед по двум причинам.

Во-первых, стало ясно, что эффект Адлера не есть некое исключительное свойство или следствие «уродства», присущее одному только мутанту кишечной палочки. Скорее это характерная черта дыхательного аппарата бактерий вообще, поскольку она проявляемся и у мутанта кишечной палочки, и у столь отдаленного в эволюционном отношении вида, как пурпурная бактерия-фотосинтетик, причем нормальный, а не мутантцый штамм. Существенно, что в качестве исходного энергетического ресурса для движения эти бактерии в отличие от кишечной палочки использовали свет, а не дыхание.

Во-вторых, Глаголев не в пример Адлеру «знал, где искать»: он мерил не только АТФ и скорость движения, но и мембранный потенциал. Обнаруженная им линейная зависимость между скоростью движения и потенциалом явилась сильным доводом в пользу нашей рабочей гипотезы.

Тем не менее нужен был прямой эксперимент. И он был вскоре поставлен.

Мы рассуждали таким образом. Если свет у нашей бактерии (или дыхание у кишечной палочки) нужен для движения только постольку, поскольку за их счет генерируется протонный потенциал, то можно получить подвижность и в отсутствие света (или дыхания), создав этот потенциал искусственно. Как это сделать?

Прежде всего необходимо перекрыть все пути образования протонного потенциала белками-генераторами. Затем к таким неподвижным уже бактериям надо добавить, например, кислоту, но не столько, чтобы, избави бог, их убить, а небольшое количество, которое просто создало бы некоторую избыточную концентрацию ионов водорода во внешней среде по сравнению с цитоплазмой бактериальной клетки. Поскольку в обычных условиях протонные генераторы бактерий откачивают ионы Н+ из клетки во внешнюю среду, то добавка кислоты должна имитировать включение генераторов.

С нетерпением я ждал результата этого опыта. Исполнится ли удивительное предсказание гипотезы: очнутся ли от паралича бактерии, отравленные целым коктейлем ядов, если в среду просто добавить немного соляной кислоты?

Опыт такого типа называют «острым». Гипотеза, положенная в основу острого опыта, выбирает из множества один-единственный вариант ответа системы на предполагаемое воздействие. Бактерии неподвижны из-за нехватки энергии. Так почему бы не добавить к ним АТФ — энергетический ресурс всех уже известных механизмов биологической подвижности? Или какой-нибудь другой нуклеозидтрифосфат, пирофосфат, фосфоэнолпируват, ацетилфосфат, ацетилкофермент А, то есть вещества, известные своей способностью оплачивать энергозатраты на отправление определенных биологических функций? А если уж менять рН среды, то почему добавлять кислоту, а не щелочь?

Поделиться с друзьями: