Чтение онлайн

ЖАНРЫ

Рассказы об электричестве
Шрифт:

Что ж, в рекламных целях за рубежом уже построен автомобиль, работающий от Солнца. Он способен с двумя пассажирами развивать скорость до 50 км/ч и ездить «от зари до зари». Правда, на всякий случай в нем предусмотрен и обычный аккумулятор.

Уже взлетел и пересек Ла-Манш первый «солнцелет», не затративший на это ни капли бензина. На его плоскостях конструкторы разместили до 15 тысяч полупроводниковых элементов. Этот экспериментальный летательный аппарат весил всего 56 килограммов. Постарались конструкторы подобрать и подходящего пилота. Вес летчицы, вместе с парашютом в ранце, добавил еще всего лишь 45 килограммов к весу машины. Самолет стартовал в ясный солнечный день, развил скорость до 80 км/ч

и находился в воздухе около пяти с половиной часов.

У нас на различных водных акваториях солнечный свет исполняет роль бакенщиков. С наступлением сумерек зажигает маяки и огни на бакенах. Ну и, наконец, вы могли видеть микрокалькуляторы с солнечной батарейкой вместо обычной. Это все «малая энергетика». А как обстоят дела в «большой»?

Мне доводилось видеть крыши экспериментальных домов, выложенные солнечными батареями, в Японии и в США. В солнечном Узбекистане и других южных республиках видел я работающие гелиоустановки. Правда, пока мне встречались лишь системы, преобразующие энергию излучения Солнца в электрическую по классической схеме: солнечный паровой котел — турбина — электрогенератор. От турбины паропровод шел к конденсатору пара с охладителем, а затем водяной насос перегонял сконденсированную воду снова в котел. От электрогенератора три фазы шли к обычному трансформатору.

Сегодня гелиоэнергетика начала создавать промышленные гелиостанции. Кто не помнит легенду о том, как во время осады Сиракуз Архимед использовал зеркала, чтобы на расстоянии поджечь римский флот? Достоверность этого пока оспаривается учеными. Для нас же важно то, что с помощью зеркал можно добиться концентрации лучей, а следовательно, и повышения температуры в заданном небольшом объеме.

Еще в 1882 году в Париже работал опытный солнечный котел, с помощью которого… печатали газету…

И вот в Пиренеях и в заокеанской Калифорнии заканчивается строительство первых солнечных электростанций промышленной мощности. «Темис» во Франции — 2,5 мегаватта и «Солар-1» в США — 10 мегаватт. Спроектированы обе гелиостанции по одному принципу: высокая солнечная башня с черной короной наверху, в которой скрыт водяной котел и целое поле гигантских зеркал — гелиостатов перед нею, отражающих солнечные лучи на черную корону.

Вычислительное устройство управляет движением зеркал, направляя их на Солнце в течение всего дня, а ночью ставя в положение покоя — отражательной поверхностью вниз. Всего таких зеркал около двадцати двух тысяч. Расчетная температура пара — 516 °C, расчетное давление — 91 атмосфера.

Большая часть производимого пара уходит на вращение турбины и электрического генератора. Избыток тепла отводится в накопитель — большой «чан», заполненный кусками гранита и песком. В теплообменнике циркулирует очищенное масло. Когда камни и песок нагреваются, накопитель становится хранилищем тепла.

Еще не пустив в ход «Солар-1», в США уже запроектировали станцию «Солар-2», в десять раз мощнее первой.

Ну а если Солнца долго нет? Или оно не такое яркое? Тогда солнечный паровой котел превращается просто в груду металла?.. Но тут мы с вами упускаем из виду то обстоятельство, что сама наша Земля является как бы огромным аккумулятором солнечного тепла. Земля — это огромная солнечная тепловая машина. Энергия, переданная планете Солнцем, определяет не только состояние погоды, но и характер климата, приводит в движение воды океана в виде течений, порождает в атмосфере ветры разной силы.

Более ста лет тому назад французский физик и физиолог, член Парижской академии наук Жак Арсен д’Арсонваль заинтересовался возможностью использовать тепловую энергию океана за счет разницы температур между теплыми поверхностными водами и холодными глубинными.

Последние исследования Мирового океана показали, что глубинные воды очень холодны, гораздо холоднее, чем предполагал д’Арсонваль. Они охлаждаются в приполярных районах Арктики и Антарктики, опускаются вниз и растекаются по всему Мировому океану. При этом их температура находится на границе замерзания. В то же время тонкий слой поверхностных вод в низких широтах щедро нагрет Солнцем. Вполне естественно, что такая диспропорция вполне способна, хотя

бы в принципе, подарить человечеству еще один экологически чистый и постоянно возобновляемый источник энергии.

Уже в конце 20-х годов XX века один из учеников д’Арсонваля сконструировал и построил действующую установку, основанную на идеях учителя. Она прошла испытания у берегов Кубы, в районе самого теплого моря. Но штормы очень скоро разрушили это хрупкое творение человеческих рук.

Сегодня эти эксперименты продолжаются. Летом 1980 года к берегам Гавайских островов из Портленда вышла плавучая лаборатория с агрегатом ОТЕК-1 на борту. Цель агрегата — переработка тепловой энергии океана в электрическую. Принцип действия установки довольно прост: теплая вода с поверхности океана, имеющая температуру около 27 °C, пропускается через систему из тонких трубок в испарителе, в котором разбрызгивается легко испаряющаяся жидкость — аммиак. Образовавшийся пар вращает турбину электрогенератора, а затем направляется в конденсатор, охлаждаемый с помощью глубинных вод, поднятых на борт насосом по трубопроводу и имеющих температуру около 4 °C. Дальше цикл повторяется.

Солнечный водонагреватель на крыше больницы в Осаке (Япония).
Недавно был создан электролет «Солар челленджер», на котором удалось перелететь через Ла-Манш.

ОТЕК-1 — установка экспериментальная. Ее задача в том, чтобы изучить проблемы, которые могут встретиться на пути эксплуатации подобных агрегатов в дальнейшем. А их оказалось немало, начиная от задачи подъема холодной воды со дна океана и до борьбы с живыми организмами, которые почему-то весьма охотно поселяются внутри теплообменников. Существует и экологическая проблема: как повлияют многочисленные установки подобного типа на состояние морской среды?

Конечно, при перепаде температур порядка 20 °C коэффициент полезного действия таких установок будет достаточно низким, всего каких-нибудь 2–3 процента. Но уже демонстрационная модель — это устройство из четырех модулей, каждый из которых будет вырабатывать электрическую энергию мощностью 10 мегаватт. Конструкторы системы ОТЕК полны оптимизма. Они считают, что уже к концу текущего десятилетия в теплых водах океана будут работать десятки описанных установок. Такие плавучие, или «пастбищные», установки могут служить также и для добычи ценного минерального сырья со дна океана, для опреснения воды, для получения синтетического топлива. Правда, пока строителей несколько смущают размеры подобных предприятий. Достаточно сказать, что установка мощностью в 400 мегаватт потребует платформы весом в 200 тысяч тонн, размером в пять футбольных полей. В час она должна будет перекачивать 10 миллионов тонн воды…

В то же время и коэффициент полезного действия любых полупроводниковых преобразователей пока невелик. И потому противники гелиотехники утверждают, что при существующей довольно низкой плотности солнечной энергии у поверхности Земли для получения промышленных потоков энергии придется отводить под солнечные электростанции огромные площади. Приводят даже такую цифру: при КПД в 10 %, достигнутом в серийных промышленных полупроводниковых преобразователях солнечной энергии, потребовалось бы занять ими площади порядка десятков тысяч квадратных километров на юге нашей страны — если нужно обеспечить выработку всей потребляемой сегодня электроэнергии.

Солнечный котел из зеркальных металлических лепестков на испытаниях в Ташкенте.

Представляете себе — десятки тысяч квадратных километров, покрытых солнечными батареями!.. Совершенно нереальная картина. Но наука и техника не стоят на месте. Развиваются методы получения кремния и новых типов фотоэлектрических преобразователей. Их коэффициент полезного действия неуклонно растет и, как убеждены специалисты, в принципе может приблизиться к своему пределу — к 90 %.

Поделиться с друзьями: