Растения и чистота природной среды
Шрифт:
Основная часть свинца оказывается в атмосфере в результате сжигания нефтепродуктов и деятельности предприятий цветной металлургии. Благодаря использованию этилированного бензина, содержащего соединения свинца, количество этого элемента в городах резко возросло.
Вместе с выхлопными газами автомобилей в окружающую человека среду только в США ежегодно попадает около 200 тыс. т свинца, что составляет около 1/6 части его годовой добычи в стране. В воздухе крупных городов США содержание свинца иногда достигает 40–70 мкг/м3 воздуха. Не случайно в костях современных американцев содержится в 100 и даже больше раз свинца, чем в костях древних египтян, а в крови городских жителей его значительно больше, чем в крови обитателей сельской местности.
Пыль, содержащая свинец,
В значительном количестве свинец поступает и в гидросферу. По подсчетам ученых, в 1972 г. в океаны и моря воздушные массы и дожди принесли около 200 тыс. т этого элемента.
Еще в 1952 г. швейцарские исследователи заметили, что на листьях деревьев, высаженных вдоль шоссе и улиц городов, возникают некротические пятна. Они появлялись с краев и постепенно распространялись к середине. Количество их год от года увеличивалось, листья становились коричневыми и отмирали. Было подмечено, что чем ближе дерево расположено к автостраде, тем сильнее оно повреждалось. Сокращение числа автомашин, движущихся по улицам, обусловленное решением городских властей, привело к заметному улучшению состояния деревьев.
В придорожных растениях количество свинца резко повышено, оно в 10—100 раз выше по сравнению с растениями, растущими вдали от дорог. Между содержанием свинца в растениях и расстоянием дерева от дороги существует доказуемая обратная зависимость (достоверность 95 %).
Свинец в достаточно высокой концентрации тормозит прорастание семян редиса, замедляет рост корней в длину, а также образование корневых волосков. Листья отравленных свинцом растений становятся хлоротичными в межжилковых зонах. Особенно сильно поражаются молодые листья.
Под влиянием свинца активность фотосистемы I и II снижалась, причем фотосистема II оказалась более чувствительной к действию этого фитотоксиканта. Свинец оказывает ингибирующее влияние на реакцию Хилла (способность изолированных хлоропластов на свету выделять кислород) и фотосинтетическое фосфорилирование. Установлено, что в хлоропластах растений, растущих поблизости от автострады, наблюдается подавление образования аденозинтрифосфорной кислоты (АТФ). Чем дальше растения расположены от автострады, тем больше в, изолированных хлоропластах образуется АТФ. Содержание АТФ находилось в обратной зависимости от количества в растениях свинца.
Кроме того, свинец вызывает потерю тургора клетками растений, в результате чего листья становятся дряблыми. Клетки корпя прекращают делиться. У редиса свинец подавляет образование корнеплодов. Неудивительно, что урожайность культурных растений вблизи предприятий, загрязняющих природную среду свинцом, сильно снижается. Вместе с тем присутствие свинца в окружающей среде приводит к существенному снижению качества продукции. В опытах с петрушкой было показано, что количество -каротина и аскорбиновой кислоты в растениях резко снижалось, если они произрастали на расстоянии 30 м от автострады по сравнению с растениями, находящимися от нее на расстоянии 200 м. В сентябре количество -каротина в растениях, соседствующих с автострадой, было на 55 % меньше. В картофеле под влиянием свинца уменьшается содержание крахмала.
Некоторые растения очень чувствительны по отношению к свинцу: ячмень, овес, пшеница, картофель. Среди дикорастущих следует отметить смолевку, которая, поглотив много свинца, приобретает карликовую форму. Листья и стебли этого растения становятся темно-красными, а цветки мелкими и невзрачными.
Поступление в атмосферу ртути обусловлено деятельностью человека, связанной с распашкой земель, бурением, с осуществлением горных работ, промышленных взрывов и т. п. Все эти факторы усиливают диффузию ртути, находящейся в почве и подпочвенной породе. Особую опасность представляет накопление ртути в гидросфере. Основным источником ее поступления в водоемы являются ядохимикаты, используемые в сельскохозяйственной практике, а также сточные воды промышленных предприятий. Кроме того, ртуть оказывается в морях и океанах, будучи привнесенной из атмосферы, куда она попадает при сжигании угля и нефти, а также при выветривании
горных пород, в результате диффузии из земных недр. Отходы, содержащие ртуть, под влиянием гнилостных процессов, протекающих в водоемах, оказываются более токсичными, чем сама ртуть. Ученые полагают, что 90 % всей ртути в водных экосистемах США, Швеции, Финляндии и ряда других стран находится в метилированной форме.Наиболее высокие концентрации ртути обнаружены у беспозвоночных и рыб в реках, озерах и прибрежных водах Японии, Скандинавских стран и Канады. У берегов Швеции, Финляндии, Дании и Норвегии обнаружено значительное увеличение ртути в рыбе (до 20 мг/кг биомассы). Отметим для сравнения, что по рекомендации Всемирной организации здравоохранения предельно допустимая концентрация ртути в рыбе составляет 0,05 мкг/г. В результате накопления этого элемента многие виды рыб стали непригодными к употреблению. То же самое происходит и в Средиземном море: отдельные виды рыб содержат в 2–3 раза больше ртути, чем считается допустимым по стандартам ВОЗ.
Первые опыты по влиянию паров ртути на растения были поставлены еще в конце XVIII в. голландскими химиками Дейманом, Паатсом, ван Тройствийком и Лауверенбургом. У бобов, мяты и сирени, помещенных под стеклянный колпак вместе с ртутью, через 24 ч листья становились пятнистыми. После нескольких дней обработки парами ртути растения погибали. Молодые цветочные почки розы оказались особенно чувствительными к наличию в воздухе паров ртути. Они погибали вместе с участками стебля, расположенными непосредственно под почкой.
Поглощенная корнями растений гороха ртуть слабо передвигается в надземные органы. Около 95 % поступившего в проростки токсиканта остается в корнях. Чем выше концентрация ртути в питательном растворе, тем больше накапливают ее корни. Около 40–50 % ртути в корнях прочно связано с фракцией клеточных стенок.
Одним из самых заметных эффектов действия этого элемента является ингибирование роста корней и побегов, что обусловлено, по-видимому, нарушением деятельности апикальных меристем. Действительно, метилртуть, растворенная в воде, накапливается в молодых тканях элодеи и оказывает токсическое влияние на апикальные меристемы, которое сильнее выражено с возрастанием концентрации и времени обработки. Уже в низких концентрациях (7,5•10– 10—7,5•10– 8М) метилртуть нарушает митотический цикл и снижает интенсивность деления клеток. При этом нередко возникают клетки, содержащие два и даже более ядер. Высокие концентрации фитотоксиканта способствуют распаду клеток и ядер.
Наряду с торможением роста под влиянием ртути наблюдаются и другие эффекты. Слабые концентрации фенилртути вызывают образование небольших опухолей на корнях пшеницы, выращенной методом гидропоники. При относительно высокой концентрации (100 мг/л бората фенилртути в 1 л питательного раствора) возникает хлороз листьев пшеницы. Хлористая ртуть, по-видимому, обладает меньшей токсичностью. В опытах с пшеницей она не вызывала хлороза листьев.
Ежегодное поступление кадмия из природных источников составляет 0,83 тыс. т, в то время как антропогенные источники дают 7,3 тыс. т. Таким образом, все природные источники загрязнения окружающей среды этим металлом отступают на второй план по сравнению с человеческой деятельностью. Главным загрязнителем атмосферы кадмием является цветная металлургия и обработка цветных металлов (5,31 тыс. т). Этот элемент широко используется в гальванотехнике и производстве сплавов, в красильном деле, для стабилизации хлорвинил-хлорида и т. д. Кроме того, кадмий поступает в окружающую среду при сгорании некоторых видов топлива и особенно при сжигании мусора и отходов (1,4 тыс. т).
Из атмосферы кадмий поступает в почву. Загрязнение ее этим элементом носит устойчивый характер, поскольку из почвы он вымывается чрезвычайно медленно.
Кадмий загрязняет и гидросферу. Только в Северном море вместе с дождем ежегодно привносится из атмосферы 230 т этого элемента. Из воды тяжелые металлы могут попадать в организмы животных. Содержание кадмия у рыб, употребляемых в пищу, относительно невелико, но оно очень высоко в таких органах, как печень, что может вызвать серьезные нарушения здоровья людей в случае использования печени рыб в пищевой промышленности.