Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Шрифт:
1
0
1
1
1
0
1
1
1
0
На следующей схеме показано, как соединить вентили И-НЕ между собой, чтобы получить вентили И и ИЛИ.
Взаимное соединение вентилей И-НЕ для получения вентиля И (слева) и
В статье «Умные машины», одной из первых в мире работ по искусственному интеллекту, Алан Тьюринг использовал вентили И-НЕ для симуляции нейронных цепей, которые назвал нейронными цепями типа В.
Нейронная сеть, изображенная Сантьяго Рамон-и-Кахалем (слева), и искусственная нейронная сеть (справа).
Эти волокна определяют конфигурацию нейронов: возбужденное состояние или нейтральное. В возбужденном состоянии, когда волокно Р активно, если модификатор связи получает на входе input 0 или 1, на выходе output будет возвращен тот же результат, 0 или 1 соответственно. С другой стороны, в нейтральном состоянии, когда волокно I активно, модификатор соединения будет вести себя так, что при любой величине на входе input, на выходе output результат всегда будет 1.
Кроме этих модификаторов, модель искусственного нейрона предполагала, что каждый нейрон имел два входа: ВХОД 1 и ВХОД 2 — и один ВЫХОД. Если оба входа находились в возбужденном состоянии, величина на ВЫХОДЕ получалась с применением булева оператора И-НЕ (вентиль И, выход которого соединяется с вентилем НЕ).
ВХОД 1
ВХОД 2
выход
0
0
1
0
1
1
1
0
1
1
1
0
Напротив, если ВХОД 1 находился в неактивном состоянии, величина на ВЫХОДЕ была равна обратной величине на ВХОДЕ 2, то есть 1, когда на ВХОДЕ 2 было 0 и наоборот.
ВХОД 1
ВХОД 2
выход
0
0
1
0
1
0
1
0
1
1
1
0
Если мы сравним модель искусственного нейрона Тьюринга с моделью Маккалока — Питтса, то увидим, что в последней величина на ВЫХОДЕ рассчитывается с заменой модификатора соединения на величину коэффициента w, который отражает синаптическую пластичность нейронов, то есть лучшую или худшую проходимость сигнала от одного нейрона к другому через синаптическую связь. Согласно формальной модели Маккалока — Питтса, нейрон ведет себя как калькулятор, способный вычислять сумму входных сигналов. Умножим каждый сигнал или ВХОД i на соответствующий коэффициент wi, сумму всех сигналов обозначим как ИТОГ:
ИТОГ = wi ВХОДi
После выполнения данной операции нейрон «решает», достаточна ли полученная информация ИТОГ для активации, или возбуждения. В самой элементарной модели нейрона величина ВЫХОДА получается с помощью ступенчатой функции:
1 ИТОГ >= U
ВЫХОД =
0 ИТОГ <= U
При этом величина порога U устанавливается предварительно. Обратим внимание, что эта величина показывает чувствительность нейрона к внешнему стимулу: нейрон более чувствителен, чем ближе к нулю величина , так как чем меньше порог, тем вероятнее, что ИТОГ превзойдет его величину при возбуждении нейрона. Если величина на ВЫХОДЕ равна нулю, нейрон останется в состоянии покоя, если на ВЫХОДЕ будет некоторая величина, нейрон перейдет в возбужденное состояние. При возбуждении нейрон отправляет ответ, величину 1, следующему нейрону, для которого это будет величина на ВХОДЕ. В других случаях величина 1 в комбинации с величинами на ВЫХОДЕ от других нейронов, например 1001, будет ответом нейронной сети на входящий сигнал.
ТЕСТ ТЬЮРИНГА
Тьюринг исследовал вопрос, как определить, разумно ли ведет себя машина (компьютер). Ученый очень изящно избежал необходимости
дать определение разуму и принял следующую точку зрения: хотя машина не разумна в том смысле, в каком это относится к человеку, ее поведение может быть разумным.Такая форма рассмотрения вопроса сегодня называется поведенческим подходом. Например, нам известно, что программы для игры в шахматы не являются разумными, но при игре они ведут себя так, будто они разумны. При этом Алан Тьюринг не дал определения разума и не ответил на вопрос, могут ли машины мыслить. На основе этих идей Тьюринг придумал испытание, известное как тест Тьюринга, состоящее в том, что машину, компьютер или программу, разумное поведение которой нужно оценить, подвергают следующей процедуре. Представим себе человека, у которого есть монитор и клавиатура. С их помощью он может задавать вопросы компьютеру, находящемуся в другой комнате. Ответ высвечивается на экране его монитора. Например, человек печатает на английском языке с помощью клавиатуры последнюю фразу, сказанную компьютером HAL-9000 в фильме «2001 год: Космическая одиссея»:
Daisy, Daisy у
give те your answer true.
Гт half crazy
over the love of you
It won’t be a stylish marriage
I can't afford a carnage...
Он запрашивает у компьютера перевод на русский и получает ответ:
Дейзи, Дейзи,
Дай мне свой правдивый ответ.
Я наполовину сошел с ума
от любви к тебе.
Это не будет стильная свадьба,
Я не могу позволить себе карету...
КАПЧА
Сегодня существует множество ситуаций, когда мы должны заполнять в интернете какие-либо поля, например при регистрации электронной почты, участии в опросах или регистрации на каком-либо сервисе. Однако в интернете присутствуют так называемые спамботы — программы, имитирующие поведение человека и также способные заполнять предложенные поля с противозаконными целями. Поэтому в 2000 году группа исследователей из Университета Карнеги-Меллона в сотрудничестве с Джоном Лангфордом из IBM разработали обратный тест Тьюринга для проверки, является собеседник машиной или человеком. Так появились КАПЧА — от английского САРТСНА (Completely Automatic Public Turing Test to tell Computers and Humans apart — полностью автоматизированный публичный тест Тьюринга для различения компьютеров и людей). В этом тесте пользователь должен ввести несколько знаков, изображение которых искажено (как на рисунке слева). Считается, что машина не сможет корректно считать информацию. Иногда символы могут быть зачеркнуты линией того же цвета (рисунок справа), чтобы программы искусственного интеллекта, например системы оптического распознавания символов (OCR), не смогли пройти тест, выдавая себя за людей.
Считается, что компьютер прошел тест Тьюринга, если человек не сможет определить, кто дал ему ответ: машина или другой человек. Показав текст на английском и его перевод нескольким людям, мы сможем определить, сколько процентов из них будут утверждать, что перевод сделан человеком, а сколько — скажут, что перевод сделал компьютер. Наверняка найдутся и те, кто не сможет определить, компьютером или человеком был сделан перевод. Если первые окажутся в меньшинстве, но при этом перевод все же был сделан компьютером (точнее программой), это будет означать, что компьютер прошел тест Тьюринга. Если компьютер или программа пройдут тест, можно будет резюмировать, что они ведут себя разумно. Если же они не пройдут тест, тогда мы не сможем прийти ни к какому заключению.
Успех теста Тьюринга заключается в том, что он многие годы оставался единственным испытанием ИИ, позволяющим установить, является ли машина разумной. Кроме того, эта проверка стала предвестником появления нового подхода к разработке ИИ — символьного (вспомним, что до этого применялись субсимвольный и поведенческий подходы). В этом направлении развития искусственного интеллекта ученые исследуют системы, обрабатывающие цепочки символов, например слова, как одно из проявлений человеческого разума.