Размышления о теоретической физике, об истории науки и космофизике
Шрифт:
Стоит отметить также, что стабильность частиц «по Ритцу» сродни стабильности капли, пребывающей в насыщенном паре, то есть любая частица получает из Вселенной ровно столько же, сколько излучает сама (частиц-реонов). Если «добавить» крутильную, вихревую составляющую, картина становится ещё более интересной, особенно в свете представлений о кинематике вихрей Шаубергера и Шульдерса.
То есть размеры частиц целиком и полностью определяются характеристиками наблюдаемой Вселенной, аналогично тому, как и законы Ньютона определяются наличием огромной массы материи, которую можно считать условно неподвижной относительно малой (условно) локальной области в пространстве. Это – принцип Маха, о котором мы говорили в 1.2. Стоит отметить также, что во многом такое представление о частицах чем-то схоже с теорией
Важные следствия из теории Ритца – способность движущихся тел сообщать частицам света свою скорость.
2.4. Идеологическая составляющая
Безусловно, причина принятия и господства Теории относительности кроется не столько в её точном экспериментальном подтверждении, сколько в явлении, которое Роджер Пенроуз охарактеризовал как моду (14). Проще говоря, теории, особенно касающиеся таких далёких и сложных вопросов, как строение Вселенной, могут входить в моду и выходить из неё даже в научной среде. Увы, но этот процесс не способствует научно-техническому прогрессу, скорее, наоборот, препятствует.
Любой исследователь обязан понимать: всё преходяще в научном мире, нет незыблемых теорий, нерушимых истин, тем более что последние открытия в области физики частиц убеждают нас: картина мира настолько сложна, что для её непротиворечивого описания приходится вводить дополнительные измерения пространства. И понять, осмыслить нашим трехмерным разумом структуру Мироздания практически невозможно.
2.5. Экспериментальные подтверждения
Сторонники баллистической теории Ритца утверждают, что частицы с ненулевой массой покоя всё же могут быть разогнаны до сверхсветовых скоростей (13). Однако экспериментального подтверждения этому нет. И всё же, существует ряд достаточно необычных экспериментов, позволяющих несколько шире взглянуть на окружающую нас Вселенную и, возможно, доработать не только теорию относительности, но и квантовую теорию. Одним из таких экспериментов является опыт А. А. Денисова. В чём он заключался? Схема установки Денисова показана на Рис. 2.
Рис. 2. Установка Денисова. 1 – вакуумные колбы; 2 – спирали накала; 3 – разгоняющие электроды.
Суть опыта состоит в создании «искусственной массы», а значит и гравитации путём воздействия на электронные облака внутри колб напряжением высокой частоты. Напряжение составило 1 кВ, частота 27 МГц, потребляемая мощность 0.5 кВт. Результирующее увеличение массы баллонов – 50 г. Это достоверный результат.
Обращаем ОСОБОЕ ВНИМАНИЕ на то, что опыт проводился с вакуумными баллонами и высокочастотными токами. Это очень важно, анализ показывает, что именно учёные, работавшие в области вакуумной техники рано или поздно столкнулись с неизведанным. Мы увидим это при описании дальнейших опытов. Таковы, например, забегая вперёд, опыты Подклетнова и Моданезе, близкие по принципу действия установке Шульдерса. Об этих установках речь пойдет в 7-ой главе, посвященной вихревым явлениям в микромире. Есть все основания считать, что знаменитый автомобиль Теслы (не та жалкая пародия, которую продаёт Илон Маск, а неповторимый оригинал) работал на схожих принципах.
И очень важно понимать, что именно Денисов А. А. указал на гипотетическую возможность и реальность сколь угодно больших скоростей. Отметим, что на это положение теории опирался А. В. Витко, создатель оригинальной теории полёта, по смыслу близкой к индуистским Ведам. Она является предтечей варп-двигателя, поэтому мы отдельно поговорим о ней в главе 9, посвящённой проектам космических кораблей.
Спорный момент теории Денисова – отсутствие конечной скорости распространения гравитационных волн. Впрочем, прав ли он в том, что возможно организовать сверхдальнюю гравитационную связь без задержек, покажет время, ибо даже современные опыты по обнаружению гравитационных волн, увы, проводятся на
пределе точности измерения, которая только может быть доступна современной технике.Итоговый же вывод по поставленному вопросу о том, верна ли Теория относительности, можно сделать следующий: и да, и нет. С одной стороны, эффекты, на которых зиждутся положения Теории относительности, реальны, наблюдаемы, используются во многих областях техники. С другой стороны, почему бы не предложить иную интерпретацию наблюдаемых явлений, тем более что Теория относительности охватывает далеко не всё? Работы в данном направлении ведутся, так или иначе, поэтому вскоре мы имеем все шансы увидеть не столько крах существующих теорий, сколько переход их в новое качество, что, впрочем, не исключает и полного пересмотра существующих положений.
Глава 3. Суперструны. Какая польза от теории, которую невозможно подтвердить практикой?
Сегодня специалисты, занимающиеся разработками в области теории струн, утверждают, что теоретическая физика давно обогнала экспериментальную. Здесь с учёными можно только согласиться: аппарат теории струн великолепно проработан, но усложняется (и будет усложняться, к сожалению). Уравнения теории струн столь сложны, что вывести их точно на сегодняшний момент ещё никому не удавалось. А рассчитывать параметры элементарных частиц, пользуясь приближёнными расчётами по приближённо же выведенным уравнениям – признак того, что не всё в теории струн так складно, как утверждают сами физики-теоретики. В этом смысле теория струн не выдерживает сравнения со Стандартной моделью, которая не в пример точнее. Кроме того, определить точно, какое из бесконечного числа многообразий Калаби-Яу, описывающих дополнительные шестимерные пространственные измерения, соответствует нашей Физической Вселенной, не представляется возможным.
Однако, проблема не столько в математике, сколько в том, что ни одно положение теории струн так и не было подтверждено экспериментально! И здесь суперструнщики абсолютно правы, утверждая, что теоретики вырвались вперёд экспериментаторов. Однако нельзя не согласится также и с тем, что теория, не имеющая практического применения и даже перспектив оного, остаётся всего лишь фантазией на тему устройства Мироздания. Да, мощности ускорителей не хватает, чтобы работать на столь глубинных уровнях материи. Но почему бы не попробовать обойти данное ограничение, используя вихревое движение материи в противовес линейно разгоняемым мощными полями частицам?
Стоит ещё отметить мнение выдающегося физика, лауреата Нобелевской премии, Роджера Пенроуза, который утверждал, что, во-первых, мы упустили что-то важное в физике, а во-вторых, что теория струн является сама по себе достаточно модной в наше время теорией, своего рода головоломкой, умственным упражнением (о чём красноречиво свидетельствуют рассказы Брайана Грина). Однако не факт, что именно она ляжет в основу физики будущего. Это всегда следует иметь в виду всем, кто занимается теоретической физикой, да и просто всем, кто интересуется самым глубинным устройством нашего Мира.
3.1. Теория струн – пример тотального усложнения с заявкой на абсолютное знание о Вселенной
Именно такое впечатление возникает при чтении научно-популярных трудов на данную тему. Абсолютное знание, полная, законченная картина Мира – вот к чему стремятся суперструнщики в настоящее время. Но стоит ли решение задачи затраченных усилий, если учёные уже столкнулись с необходимостью производить расчёты по приближённым уравнениям, выведенным приближёнными методами? Возможно ли вообще построить «теорию всего»?
Заметим, что, с одной стороны, сложный аппарат теории струн может быть действительно результатом какого-то заблуждения: Габриэле Венециано заметил, что бета-функция Эйлера хорошо описывает поведение частиц, и все его последователи «уцепились» за эту идею, став «плясать» конкретно от этой «печки». Такова точка зрения упомянутого выше Роджера Пенроуза. С другой стороны, сама сложность теории струн может свидетельствовать о принципиальной неспособности человеческого разума заглянуть «туда», на самые глубинные уровни материи. Может быть даже информации. Об этом говорил Дж. Уилер, и об этом же нами подробно рассказано в главе 1, посвящённой ИЭУ.