put_cpu_var; /* разрешить вытеснение кода в режиме ядра */
Можно также получить доступ к переменной, связанной с другим процессором.
per_cpu(name, cpu)++; /* увеличить значение переменной name
на указанном процессоре */
Использовать функцию
per_cpu
необходимо осторожно, так как этот вызов не запрещает вытеснение кода и не обеспечивает никаких блокировок. Необходимость использования блокировок при работе с данными, связанными с определенным процессором, отпадает, только если к этим данным может обращаться
один процессор. Если процессоры обращаются к данным других процессоров, то необходимо использовать блокировки. Будьте осторожны! Применение блокировок рассматривается в главе 8, "Введение в синхронизацию выполнения кода ядра", и главе 9, "Средства синхронизации в ядре".
Необходимо сделать еще одно важное замечание относительно создания данных. связанных с процессорами, на этапе компиляции. Загружаемые модули не могут использовать те из них, которые объявлены не в самом модуле, потому что компоновщик создает эти данные в специальных сегментах кода (а именно,
.data.percpu
). Если необходимо использовать данные, связанные с процессорами, в загружаемых модулях ядра, то нужно создать эти данные для каждого модуля отдельно или использовать динамически создаваемые данные.
Работа с данными процессоров на этапе выполнения
Для динамического создания данных, связанных с процессорами, в ядре реализован специальный распределитель памяти, который имеет интерфейс, аналогичный
kmalloc
. Эти функции позволяют создать экземпляр участка памяти для каждого процессора в системе. Прототипы этих функций объявлены в файле
<linux/percpu.h>
следующим образом.
void *alloc_percpu(type); / * макрос */
void *__alloc_percpu(size_t size, size_t align);
void free_percpu(const void*);
Функция
alloc_percpu
создает экземпляр объекта заданного типа (выделяет память) для каждого процессора в системе. Эта функция является оболочкой вокруг функции
__alloc_percpu
. Последняя функция принимает в качестве аргументов количество байтов памяти, которые необходимо выделить, и количество байтов, но которому необходимо выполнить выравнивание этой области памяти. Функция
alloc_percpu
выполняет выравнивание по той границе, которая используется для указанного типа данных. Такое выравнивание соответствует обычному поведению, как показано в следующем примере.
— это расширение, предоставляемое компилятором gcc, который возвращает количество байтов, по границе которого необходимо выполнять выравнивание (или рекомендуется выполнять для тех аппаратных платформ, у которых нет жестких требований к выравниванию данных в памяти). Синтаксис этого вызова такой же как и у оператора
sizeof
. В примере, показанном ниже, для аппаратной платформы x86 будет возвращено значение 4.
__alignof__(unsigned long)
При передаче l-значения (левое значение, lvalue) возвращается максимально возможное выравнивание, которое может потребоваться для этого l-значения. Например, l-значение внутри структуры может иметь большее значение выравнивания, чем это необходимо для хранения того же типа данных за пределами структуры, что связано с особенностями выравнивания структур данных в памяти. Проблемы выравнивания более подробно рассмотрены в главе 19, "Переносимость".
Соответствующий
вызов функции
free_percpu
освобождает память, которую занимают соответствующие данные на всех процессорах.
Функции
alloc_percpu
и
__alloc_percpu
возвращают указатель, который используется для косвенной ссылки на динамически созданные данные, связанные с каждым процессором в системе. Для простого доступа к данным ядро предоставляет два следующих макроса.
get_cpu_ptr(ptr); /* возвращает указатель типа void на данные,
соответствующие параметру ptr, связанные с текущим процессом */
put_cpu_ptr(ptr); /* готово, разрешаем вытеснение кода в режиме ядра */
Макрос
get_cpu_ptr
возвращает указатель на экземпляр данных, связанных с текущим процессором. Этот вызов также запрещает вытеснение кода в режиме ядра, которое снова разрешается вызовом функции
put_cpu_ptr
.
Рассмотрим пример использования этих функций. Конечно, этот пример не совсем логичный, потому что память обычно необходимо выделять один раз (например, в некоторой функции инициализации), использовать ее в разных необходимых местах, а затем освободить также один раз (например, в некоторой функции, которая вызывается при завершении работы). Тем не менее этот пример позволяет пояснить особенности использования.
void *percpu_ptr;
unsigned long *foo;
percpu_ptr = alloc_percpu(unsigned long);
if (!ptr)
/* ошибка выделения памяти ... */
foo = get_cpu_ptr(percpu_ptr);
/* работаем с данными foo ... */
put_cpu_ptr(percpu_ptr);
Еще одна функция —
per_cpu_ptr
— возвращает экземпляр данных, связанных с указанным процессором.
per_cpu_ptr(ptr, cpu);
Эта функция не запрещает вытеснение в режиме ядра. Если вы "трогаете" данные, связанные с другим процессором, то, вероятно, необходимо применить блокировки.
Когда лучше использовать данные, связанные с процессорами
Использование данных, связанных с процессорами, позволяет получить ряд преимуществ. Во-первых, это ослабление требований по использованию блокировок. В зависимости от семантики доступа к данным, которые связаны с процессорами, может оказаться, что блокировки вообще не нужны. Следует помнить, что правило "только один процессор может обращаться к этим данным" является всего лишь рекомендацией для программиста. Необходимо специально гарантировать, что каждый процессор работает только со своими данными. Ничто не может помешать нарушению этого правила.
Во-вторых, данные, связанные с процессорами, позволяют существенно уменьшить недостоверность данных, хранящихся в кэше. Это происходит потому, что процессоры поддерживают свои кэши в синхронизированном состоянии. Если один процессор начинает работать с данными, которые находятся в кэше другого процессора, то первый процессор должен обновить содержимое своего кэша. Постоянное аннулирование находящихся в кэше данных, именуемое перегрузкой кэша (cash thrashing), существенно снижает производительность системы. Использование данных, связанных с процессорами, позволяет приблизить эффективность работы с кэшем к максимально возможной, потому что в идеале каждый процессор работает только со своими данными.