Чтение онлайн

ЖАНРЫ

Разведка далеких планет
Шрифт:

Плоский фронт световой волны, пройдя сквозь атмосферу, искажается и вблизи телескопа имеет довольно сложную структуру. Для характеристики искажения обычно используют параметр r 0– радиус когерентности волнового фронта, определяемый как расстояние, на котором среднеквадратическая разность фаз достигает 0,4 длины волны. В видимом диапазоне, на волне длиной 500 нм, в подавляющем большинстве случаев r 0лежит в интервале от 2 до 20 см; условия, когда r 0=10 см, нередко считаются типичными. Угловое разрешение крупного наземного телескопа, работающего через турбулентную атмосферу с применением длительной экспозиции, равно разрешению идеального телескопа диаметром r 0, работающего вне атмосферы. Поскольку значение r 0возрастает приблизительно пропорционально длине волны излучения ( r 0 6/5),

атмосферные искажения в инфракрасном диапазоне существенно меньше, чем в видимом.

Рис. 3.34. Принципиальная схема адаптивной оптической системы телескопа.

Для небольших наземных телескопов, диаметр которых сравним с r 0, можно считать, что в пределах объектива волновой фронт плоский и в каждый момент времени наклонен случайным образом на некоторый угол. Наклон фронта соответствует смещению изображения в фокальной плоскости, или, как говорят астрономы, дрожанию (в физике атмосферы принят термин «флуктуации угла прихода»). Для компенсации дрожания в таких телескопах достаточно ввести плоское управляемое зеркало, наклоняющееся по двум взаимно перпендикулярным осям. Опыт показывает, что такое простейшее исполнительное устройство в системе адаптивной оптики малого телескопа весьма существенно повышает качество изображения при длительных экспозициях.

У телескопов большого диаметра ( D) на площади объектива укладывается порядка (D/ r 0) 2квазиплоских элементов волнового фронта. Этим числом и определяется сложность конструкции компенсирующего зеркала, т. е. количество пьезоэлементов, которые, сжимаясь и расширяясь под действием управляющих сигналов, с высокой частотой (до тысяч герц) изменяют форму «мягкого» зеркала. Нетрудно оценить, что на крупном телескопе (D =8-10 м) полное исправление формы волнового фронта в оптическом диапазоне потребует корректирующего зеркала с (10 м/10 см) 2= 10 000 управляемых элементов.

Рис. 3.35. Мгновенное изображение яркой звезды, Веги, полученное французским астрономом А. Лабейри на 5-метровом Паломарском телескопе при атмосферном качестве изображений 1,5''. Именно такой угловой диаметр имеет вся эта «клякса» на фото, но состоит она из множества мелких частей – спеклов, каждый размером около 0,02''. Спеклы – это результат интерференции света, прошедшего через объектив телескопа и получившего случайные фазовые задержки при прохождении через атмосферу.

При нынешнем развитии систем адаптивной оптики это практически невыполнимо. Однако в близком инфракрасном диапазоне, где значение r 0– 1 м, корректирующее зеркало должно содержать около 100 элементов, что вполне достижимо. Например, система адаптивной оптики «Интерферометра Очень большого телескопа» (VLTI) Европейской южной обсерватории в Чили имеет корректирующее зеркало из 60 управляемых элементов.

Для выработки сигналов, управляющих формой корректирующего зеркала, обычно анализируется мгновенное изображение яркой одиночной звезды. В качестве приемника используется анализатор волнового фронта, размещенный у выходного зрачка телескопа. Сквозь матрицу из множества небольших линз свет звезды попадает в ПЗС-камеру, сигналы которой оцифровываются и анализируются компьютером. Управляющая программа, изменяя форму корректирующего зеркала, добивается того, чтобы изображение звезды имело идеально «точечный» вид. По сути, в этом-то и заключается главная идея астрономической системы адаптивной оптики: нам заранее известно, каким в идеальном телескопе должно быть изображение звезды! Звезда должна выглядеть точкой (точнее, маленьким дифракционным кружочком). Искривив мягкое зеркало так, чтобы изображение звезды стало точкой, мы сделаем четкими и изображения всех соседних с ней объектов!

Эксперименты с системами адаптивной оптики начались в конце 1980-х гг., а к середине 1990-х гг. уже были получены весьма обнадеживающие результаты. Одним из первых телескопов, на которых тестировалась система компенсации атмосферных искажений, в 1992 г. стал уже знакомый нам старенький 60-дюймовый «Хейл» обсерватории Маунт-Вилсон. 69-канальная система адаптивной оптики позволила повысить его угловое разрешение с 0,5–1,0'' до 0,07''. С 2000 г. практически на всех крупных телескопах используются такие системы, позволяющие довести угловую разрешающую способность телескопа до его физического (дифракционного) предела. В конце ноября 2001 г. система адаптивной оптики начала работать на 8,2-метровом телескопе «Йепун» (VLT, Чили). Это существенно улучшило качество наблюдаемой картины: теперь угловой диаметр изображений звезд составляет 0,07'' в спектральном диапазоне К (2,2 мкм) и 0,04'' в диапазоне J (1,2 мкм).

Искусственная звезда.Для быстрого анализа изображения в системе адаптивной оптики используется опорная звезда, которая должна быть весьма яркой, поскольку ее свет делится анализатором волнового фронта на сотни каналов и в каждом из них регистрируется с частотой около 1 кГц. К тому же яркая опорная звезда

должна располагаться на небе вблизи изучаемого объекта. Однако в поле зрения телескопа далеко не всегда встречаются подходящие звезды: ярких звезд на небе не так много, поэтому до недавних пор системам адаптивной оптики были доступны наблюдения лишь 1 % небосвода – маленькие площадки вокруг ярких звезд. Чтобы снять это ограничение, было предложено использовать искусственный «маячок», который располагался бы вблизи изучаемого объекта и помогал зондировать атмосферу.

Рис. 3.36. Сравнение изображений звезды, полученных без применения и с использованием системы адаптивной оптики.

Эксперименты показали, что для работы активной оптики очень удобно при помощи специального лазера создавать в верхних слоях атмосферы искусственную звезду (Laser Guide Star, LGS) – маленькое яркое пятно, постоянно присутствующее в поле зрения телескопа. Как правило, для этого используется лазер непрерывного действия с выходной мощностью в несколько ватт, настроенный на частоту резонансной линии натрия (например, на линию D 2Na). Его луч фокусируется в атмосфере на высоте около 90 км, там, где присутствует естественный слой воздуха, обогащенный натрием, свечение которого как раз и возбуждается лазерным лучом. Физический размер светящейся области составляет около 1 м, что с расстояния в 100 км воспринимается как объект с угловым диаметром около 1''. Например, в системе ALFA (Adaptive optics with Laser For Astronomy), разработанной в Институте внеземной физики и Институте астрономии Общества им. Макса Планка (Германия) и пущенной в опытную эксплуатацию в 1998 г., аргоновый лазер накачки мощностью 25 Вт возбуждает лазер на красителях выходной мощностью 4,25 Вт, который и дает излучение в линии D 2натрия. Это устройство создает искусственную звезду с визуальным блеском 9-10™. Правда, появление в атмосфере аэрозоля или наблюдение на больших зенитных расстояниях существенно снижают блеск и качество искусственной звезды.

Поскольку луч мощного лазера способен ночью ослепить пилота самолета, астрономы принимают меры безопасности. Видеокамера с полем зрения 20° следит через тот же телескоп за областью неба вокруг искусственной звезды и при появлении любого объекта выдает команду на заслонку, перекрывающую лазерный луч.

Создание в конце XX в. систем адаптивной оптики открыло новые перспективы перед наземной астрономией: угловое разрешение крупных наземных телескопов в видимом диапазоне вплотную приблизилось к возможностям космического телескопа «Хаббл», а в близком инфракрасном диапазоне даже заметно превысило их. К тому же разработка адаптивной оптики сделала возможным строительство наземных оптических интерферометров на базе телескопов большого диаметра. Дело в том, что после прохождения светового луча через атмосферу он теряет когерентность, и работа интерферометра становится невозможной. Поэтому наземные интерферометры без системы адаптивной оптики работать не могут. Благодаря созданию этих систем уже вступают в строй крупные оптические интерферометры, которые будут способны не только обнаруживать, но даже исследовать планеты у других звезд.

Утверждение, что теперь все астрономические наблюдения можно проводить из космоса, не выдерживает критики, поскольку не имеет смысла делать за большие деньги в космосе то, что можно значительно дешевле сделать на Земле. Четыре десятилетия космической астрономии показали, что с орбиты нужно наблюдать лишь то, что недоступно на Земле. Большую часть оптических и радионаблюдений с успехом можно проводить из наземных обсерваторий, если не создавать им препятствий в работе.

Обсудив замечательные технические возможности и перспективы наземной астрономии, мы должны коснуться еще одной, «нетехнической» проблемы – как выбрать на дне нашего воздушного океана наилучшее место для строительства телескопа. Казалось бы, самое желанное место для установки телескопа – вершина Эвереста, но почему-то никто из астрономов туда не стремится. Вкладывая большие деньги в строительство телескопов, астрономы придирчиво выбирают места для сооружения обсерваторий, предъявляя к ним массу противоречивых требований. Среди них есть вполне понятные – экономические. Место строительства крупного телескопа должно быть доступным для большегрузных автомобилей, перевозящих массивные части телескопа и его зеркало. Желательно, чтобы невдалеке проходили морские или речные пути. При этом желательно избегать сейсмически активных областей, хотя это редко удается. Учитывая высокую стоимость больших телескопов, их стараются размещать в политически стабильных странах. Но все же главными требованием при выборе места является требование к его астроклимату.

Астрономический климат? Оказывается, есть и такой!

Астроклимат

Так называют совокупность атмосферных условий, влияющих на качество астрономических наблюдений. Важнейшие из них – прозрачность воздуха, степень его однородности (влияющая на четкость изображения объектов), величина фонового свечения атмосферы, суточные перепады температуры и сила ветра.

Напомню: астрономические наблюдения производятся со дна воздушного океана. Уже говорилось, что, будучи сжата до плотности воды, наша атмосфера имела бы толщину 10 метров! В море с такой глубины звезды практически не видны. К счастью, наша атмосфера прозрачнее морской воды и позволяет нам видеть Вселенную. Но волнение воздушного океана, плавающие в нем облака и пыль, свечение газов и поглощение ими света звезд – все это вынуждает астрономов стремиться к «всплытию», к продвижению в верхние слои атмосферы.

Поделиться с друзьями: