Развивай свой мозг. Как перенастроить разум и реализовать собственный потенциал
Шрифт:
Возможно, вы помните термин «ион» из курса химии в средней школе. Так вот, ион – это атом, имеющий электрический заряд, поскольку он либо получил, либо потерял электрон в своей внешней оболочке. Ионы важны для нашего обсуждения, поскольку эти заряженные атомы вырабатывают электрические сигналы, посредством которых осуществляется сообщение между нервными клетками. Клеточная мембрана нейрона позволяет некоторым ионам проникать сквозь нее, но удерживает остальных. Больше всего нас в данном случае интересуют натриевый и калиевый ионы, имеющие положительный электрический заряд, и ионы хлора, имеющие отрицательный заряд. Когда нейрон пребывает в спокойном, или не стимулированном состоянии, внутренняя поверхность его клеточной мембраны имеет отрицательный заряд относительно внешней среды, потому что внутри клетки находится
Поток ионов длится всего лишь пять миллисекунд, но этого достаточно для возникновения электрического тока, называемого потенциалом действия, который перемещается вдоль аксона. Для наших целей вам нужно знать о потенциале действия только то, что при возбуждении нервной клетки, когда она достигает определенного порога электрического заряда, происходит быстрый обмен заряженными частицами, которые плывут вдоль ее мембраны к аксонным терминалям. Вслед за этим действием ионы быстро возвращаются к состоянию покоя.
Как только запускается потенциал действия, он проходит по нервной клетке в виде каскадного, волнообразного потока, называемого нервным импульсом. Для наглядности представьте, что вы держите конец длинной веревки. Если встряхнуть ее как кнут, вы создадите волну, которая прокатится по всей длине веревки. Подобным же образом, как только на клетку воздействует стимул достаточно сильный, чтобы активировать, или зажечь ее, это вызывает спонтанно распространяющийся электрический импульс, который не остановится до тех пор, пока не пройдет весь путь до окончания аксона. Электрический ток проходит вдоль всего аксона единым импульсом до полной разрядки. Ученые называют это законом «все или ничего», или законом Боудича. В этой книге мы ссылаемся на потенциал действия в любом нейроне или группе нейронов, используя такие выражения, как «когда нейроны зажигают», «когда нейроны активируют» или «когда нейроны включают».
Скорость этой передачи по нервным волокнам впечатляет. Потенциал действия, длящийся тысячную долю секунды, может пройти вдоль всего аксона со скоростью, превышающей 300 км/ч. Или для большей наглядности скажем, что этот импульс может преодолеть 100 метров, примерную длину футбольного поля, за секунду. Когда нервный импульс запускается, его интенсивность, или мощность, всегда остается неизменной до окончания передачи. Учитывая, что нервный импульс перемещается посредством электрического тока, перетекая вдоль аксона, можем ли мы изменить этот ток?
Ионный обмен внутри и снаружи нервных клеток (потенциал действия) вырабатывает электромагнитное поле. В процессе мозговой активности миллионы нейронов зажигаются синхронно, что вызывает поддающееся измерению электромагнитное поле. Если вам доводилось наблюдать технологию ЭЭГ в действии, в ходе которой на голове человека закрепляются электроды для считывания активности мозга, вы видели, как записываются эти индукционные поля. Нервные клетки, зажигаемые единым тандемом по всему мозгу, могут производить различные типы электромагнитных полей, обозначающих собой различные состояния разума. Используя технологию ЭЭГ, ученые даже могут соотносить повышенную активность этих электромагнитных полей с особыми областями мозга, связанными с различными мыслительными процессами.
Мы генерируем электрические импульсы у себя в мозге ежесекундно – когда обрабатываем информацию из внешней среды, обдумываем свои личные мысли и даже когда спим. Это происходит в различных областях нашего мозга, в миллионах и миллионах различных нейронов, каждую секунду.
Фактически, число нервных импульсов, вырабатываемых в течение дня в человеческом мозге, превышает число электрических импульсов всех сотовых телефонов на планете.
А теперь давайте посмотрим поближе, как перемещается информация от одной нервной клетки к другой. Когда нейроны передают сигналы в виде электрических импульсов, они должны сообщаться между собой через щель, разделяющую их. Эта щель между аксонной терминалью (отправителем сигнала) нервной клетки и дендритом (получателем сигнала) соседнего нейрона
является местом синаптической связи, или синапсом. (Этот термин происходит от греческого слова, означающего «соединять» или «присоединять».) Всего лишь в тысячную долю миллиметра в ширину, синаптическая щель позволяет нервным импульсам беспрерывно продолжать свой путь от одного нейрона к другому.Отправляющая сторона щели, где оканчивается аксонная терминаль (изображенная в виде корневой системы дерева в точке A на рис. 3.3), называется пресинаптической зоной, потому что сигнал на этой стороне щели еще не пересек синапса. Принимающая сторона синапса, где дендрит принимает информацию, является постсинаптической зоной (самые дальние ветви дерева, напоминающие пальцы).
Имейте в виду, что нейроны не соединяются в виде простых цепочек, подобно железнодорожным товарным вагонам, составленным вместе, поочередно, один за другим. Во-первых, аксон может направлять информацию одновременно более чем одной нервной клетке, что называется дивергенцией. Когда такое происходит, сообщение от одной нервной клетки расходится, или распространяется, по множеству соседних нервных клеток. Потенциально один нейрон создает каскад информации, который может направить многим тысячам других нейронов. Процесс нейронной дивергенции во многом похож на бросание камешка в воду, от которого расходятся волны во всех направлениях.
В другом процессе, называемом конвергенцией, одна нервная клетка принимает сообщения с помощью своих дендритов от множества нейронов, а затем конвергирует эти различные разряды информации в единый сигнал, который передает через аксон. Представьте наш дуб, ветви (дендриты) которого распространяются во всех направлениях. А затем представьте тысячи других деревьев, парящих в трехмерном пространстве с их корневыми системами (аксонными терминалями), касаясь малой части кроны нашего исходного дерева. Эти различные деревья передают бесчисленные электрические токи одному дереву, и оно конвергирует всю эту информацию по единому пути вдоль своего ствола до самых корней. Конвергенция происходит, когда широкая нейронная активность связывается воедино таким образом, чтобы все нервные импульсы сошлись в нескольких отдельных нейронах. Вы можете увидеть процессы дивергенции и конвергенции на рис. 3.4.
Итак, наш карандаш лежит и ждет нас. Что должно произойти, чтобы вы взяли его? Если вы потянулись и взяли карандаш, значит, во множестве нейронов в различных областях вашего мозга зажегся каскад потенциалов действия, вызывая согласованное движение вашей руки. Далее расписаны простейшие шаги этого процесса, которые, впрочем, не обязательно должны происходить в такой последовательности.
Рис. 3.4. Дивергенция и конвергенция
1. Мысль о том, чтобы поднять карандаш, вызывает первую серию потенциалов действия в мозге.
2. Глаза видят карандаш и запускают вторую серию потенциалов действия.
3. Затылочная доля (область мозга, отвечающая за зрение) регистрирует образ, который вы видите.
4. Височная доля (отвечающая за ассоциации совместно с хранением воспоминаний и обучением) ассоциирует образ, который вы видите, с тем, чем располагает ваша память относительно карандашей, что запускает очередную серию потенциалов действия.
5. Лобная доля (отвечающая за высшую умственную деятельность) позволяет вам удерживать внимание, пока вы намеренно тянетесь за карандашом.
6. Когда вы начинаете формулировать и интегрировать движение руки за карандашом, лобная доля и теменная доля (двигательный отдел мозга, также отвечающий за языковые механизмы и общие сенсорные функции) помогают вам начать движение плеча, предплечья, кисти и пальцев и включают ваше сенсорное прогнозирование того, как должен ощущаться карандаш у вас в руке.