Роберт Оппенгеймер и атомная бомба
Шрифт:
На основе принципов волновой механики Гейзенберг дал математическую формулировку соотношения неопределенностей: некоторые параметры отдельных частиц связаны между собой таким образом, что их можно одновременно измерить только до определенной степени точности. Чем больше увеличивают точность измерения одного параметра, тем больше автоматически возрастает неопределенность другого параметра. Таким образом, чем более точно определяется положение электрона, тем меньше оказывается данных о его количестве движения (т.е. о его энергии), а чем лучше производится измерение количества движения электрона, тем менее точно можно установить его положение. При этом речь идет не о несовершенстве методов эксперимента, а о неизбежном следствии квантовой теории, установленном логическим путем.
«Есть много странного в том, что касается тождественности электронов и их опознаваемости, – отмечает Оппенгеймер. – Все они похожи друг на друга. Присущие им свойства, их заряд, их масса в состоянии покоя – одни и те же. Эту штуку хотелось бы представить себе более
Итак, квантовая механика оперирует представлениями, которые могут быть выражены с помощью концепций, заимствованных из нашего макрофизического мира, только в грубом приближении. Этим объясняются те туманные сравнения, которыми пользуются сами физики, когда пытаются объяснить физический смысл хорошо понятного им квантового числа, например спина частицы, нематематическим языком. Спин изображают как вращательное движение самой частицы, подобное вращению планеты около ее оси, однако в отличие от планеты вращательное движение частицы имеет одну особенность: где бы ни находился наблюдатель, он всегда окажется на продолжении оси вращения. Каким образом это оказывается возможным? Справедливо ли предполагать, что частица вращается вокруг своей оси, как планета? «В действительности, – пишет Семон, – ошибка заключается не в наших словах, потому что мы всегда вправе расширять или ограничивать смысл употребляемых понятий, и не в нашей логике; дело в том, что только математическим методом можно точно и без внутренних противоречий описать спин электрона. Ошибка лежит в основе нашего восприятия, которое побуждает нас «увидеть» вращение электрона, в то время как речь идет об элементарной частице, которая подчиняется совершенно иным закономерностям».
Для простых смертных существует много других неясных понятий, с которыми приходится сталкиваться в математическом аппарате волновой механики. Так, например, волна, связанная с системой корпускул, перемещается не в обычном трехмерном физическом пространстве, а в абстрактном многомерном пространстве. Непривычно также появление мнимой единицы (корень квадратный из —1), обозначаемой через i, которая непременно входит в уравнения волновой механики, в то время как согласно здравому смыслу отрицательное число не должно иметь квадратного корня, потому что все квадраты чисел положительны.
А что можно сказать о принципе неопределенности, который с математической точностью устанавливает пределы основной погрешности процесса нашего познания? Остается повторить строку из шутливого стихотворения:
Чтобы понять значенье этих штук,
Закончить надо полный курс наук.
Но и после окончания полного курса следовало двигаться вперед, для того чтобы следить за новыми опытами и теоретическими построениями, создаваемыми в лабораториях и аудиториях Кембриджа, Копенгагена, Геттингена, Парижа и других научных центров.
Тем не менее мы придерживаемся в этом вопросе несколько более оптимистического взгляда, чем сам Оппенгеймер, который провозгласил следующее: «Современный уровень познания не может уже определяться богатством общей культуры человека, как это было во времена Афин или в Европе XV века. Достижения науки стали уделом небольших высоко специализированных групп ученых, которые не могут сделать их, как это было с опытом Ньютона, достоянием простых смертных». Это рассуждение ошибочно, во всяком случае в отношении роли, какую мог играть закон всемирного тяготения для «простых смертных», живших во времена Ньютона. Не следует также забывать о существенном различии между тем познанием, которое можно назвать сегодня технической специализированной наукой, служащей людям, призванным непосредственно использовать ее последние достижения, и знаниями, распространяемыми в наглядной и доступной форме для установления связи между системой мышления и развитием познания. Не может быть никакого сомнения в том, что популяризация знаний в нашу эпоху очень важна для общей культуры. А поскольку мы живем в обществе, на которое научный прогресс – идет ли речь о прикладных науках или о теоретических исследованиях – оказывает все большее и большее влияние, а сама наука движется вперед с большим ускорением, то человек зрелого возраста, оставшийся при багаже школьных знаний, приобретенных двадцать лет тому назад, оказывается оторванным от своей эпохи.
Этот увеличивающийся разрыв между школьными знаниями и научными достижениями,
сделанными на протяжении жизни человека, создает такие сложные условия для популяризации научных знаний, каких не было ни в Афинах, ни в Европе эпохи Возрождения, но именно он и делает необходимость в популяризации сегодня гораздо более настоятельной. В то же время этот разрыв еще более увеличивается бессмысленностью наших школьных программ, уделяющих столько времени неправильным глаголам или пуническим войнам, в то время как двенадцатилетние мальчишки жадно интересуются ядерным расщеплением или астронавтикой и превосходно могут понять гораздо больше того, что им преподносят их ретроградные наставники.Возможно, что скептицизм Оппенгеймера относительно возможности сделать абстрактные формы достижений современной физики достоянием общей культуры увеличился с годами, и, быть может, именно драма атомной бомбы, в которой на его долю выпала тяжелая участь ученого, оказавшегося в смятении перед лицом общества, оказала на него такое влияние. Все это мы увидим позднее. В 1929 году, когда Роберт Оппенгеймер снова ступил на американскую землю, можно с уверенностью сказать, что он не испытывал ничего похожего на чувство отчужденности. Карьера, которую он себе избрал, сулила ему одни лишь победы. Американские университеты раскрыли настежь перед молодым ученым свои двери: его первые успехи в Европе уже стали известны за океаном. Английские и немецкие журналы опубликовали работы Оппенгеймера о применении квантовой теории к распределению интенсивности между различными частотами спектров и поведении свободных электронов при их вхождении в пространство взаимодействия с атомами. Он мог выбирать между несколькими институтами, которые приглашали его читать студентам курс физики. После некоторого колебания Оппенгеймер остановил свой выбор на Калифорнийском университете в Беркли около Сан-Франциско. Говорят, что когда декан факультета спросил Оппенгеймера о причинах, побудивших его выбрать Калифорнийский университет, то Оппенгеймер изумил его, ответив, что его прельстила богатая коллекция стихов французских поэтов XVI и XVII веков, собранная в университетской библиотеке.
В этом не совсем серьезном ответе заметна та характерная для Оппенгеймера непринужденность в беседе, которая, по свидетельству тех, кто его знал, составляла черту его личного обаяния. И даже если ему задавали вопрос, относящийся к серьезной проблеме, то он отвечал на него слишком витиевато; однако после нескольких обходных маневров смущенный собеседник замечал, что ответ, казавшийся весьма далеким от вопроса, неожиданно становится ясным и раскрывает самую суть затронутой проблемы. Не так ли когда-то изрекали свои истины оракулы и апостолы?
После того как Оппенгеймер заканчивал годовой курс лекций в Калифорнийском университете, он обычно продолжал занятия в Технологическом институте в Пасадене, неподалеку от Лос-Анжелоса, и многие студенты следовали за ним из Сан-Франциско, не желая расставаться на шесть месяцев с преподавателем, который излагал новейшую физику, как увлекательную историю приключений человеческого разума. Вдобавок ко всему, молодой преподаватель обладал привлекательной внешностью: синие глаза под густыми бровями украшали его несколько неправильное лицо, «Несмотря на молодость «Оппи» (как его называли), подрастающее поколение американских физиков, – рассказывает Юнг, – уже смотрело на него, как на образец для себя, точно так же, как всего лишь несколько лет назад он сам смотрел на великих ученых-атомников в Европе. Благоговение, которое испытывали студенты к своему кумиру, было столь велико, что сознательно или несознательно они подражали многим его личным странностям. Держали, например, головы слегка набок, как это делал он, слегка покашливали и делали многозначительные паузы между фразами, складывая во время разговора руки перед губами, употребляли туманные сравнения, которые иногда звучали весьма значительно. Оппенгеймер, заядлый курильщик, имел привычку вскакивать и щелкать зажигалкой, когда кто-нибудь вынимал сигарету или трубку. В университетских кафетериях Беркли и Пасадены его студентов можно было узнать, издалека по их привычке время от времени дергаться, подобно марионеткам, с огоньками зажигалок в руках».
Между тем американские и иностранные журналы продолжали из месяца в месяц публиковать статьи Оппенгеймера, представлявшие большой интерес. И то, что имя Оппенгеймера не стоит рядом с именами великих открывателей новых путей в физике, нисколько не умаляет роли Оппенгеймера, как пионера новой области познания, неистощимого в своей научной активности. В то время теория и эксперимент особенно плодотворно дополняли друг друга. Уравнения волновой механики дали возможность углубиться в сущность взаимодействий энергии и вещества, поведения электронов и составных частей ядра. Ускорители частиц предоставили в распоряжение экспериментаторов снаряды, несравненно более мощные, чем альфа-частицы, возникающие в процессе естественной радиоактивности, которыми пользовался Резерфорд. Средства наблюдения и обнаружения также стали более совершенными.