Роскон 2017. Атомный панк: война в космосе
Шрифт:
К счастью, отправить подобный "чемодан" в полёт могла та же атомная пусковая. Кроме двух спецбоеприпасов боекомплект планировали дополнить парой "конвенционных" ракетных снарядов, которые прилетали бы в нужную точку строго под нужным углом с максимальным отклонением порядка 12 метров. Их тяжёлые фрагменты гарантировали поражение даже сравнительно защищённой техники с приличным закорпусным воздействием.
Может показаться, что выше описана груда оружия и боеприпасов, под которой можно похоронить мамонта. Но в проекте двенадцать пистолетов с боекомплектом, полсотни ручных и полсотни стационарных "клейморов", шесть гранатомётов с полутораста осколочными и шестьюдесятью
Влетала эта предполагаемая миниатюризация в копеечку. Умением пилить бюджеты американская военка после войны за считанные годы затмила даже коррупционные схемы третьего рейха. "Проект Горизонт" исключением не стал.
В послезнании можно уверенно заявить, что в пределах изначальных сметы и срока разработки военная машина США на протяжении XX века не создала буквальным счётом ничего, и "проект Горизонт" исключением бы не стал.
Для работ за пределами "ближнего прицела" 1964-1965 годов крайне настоятельно советовали провести дальнейшее рассмотрение вопроса "лучей смерти" любого типа. Вторым средством эффективной защиты от космических аппаратов противника виделись исключительно управляемые ракеты, заведомо одноразовые, тяжёлые и габаритные.
Вопросы повышения их боевой эффективности превратились в совершенно отдельный подвид специальной олимпиады.
Разумеется, тоже атомной.
V. Как прожить без лучей смерти? Ядерное оружие космос-космос. Атомная пика и атомный дробовик.
Помимо уже названных выше проблем с банальным сохранением атомного оружия в пригодном к использованию состоянии в условиях космоса, у него есть и масса других проблем.
Достаточно жёстко ограничено число килотонн в килограмме массы изделия. У первых атомных бомб это число болталось где-то в районе четырёх тысячных на килограмм. Пять-шесть килотонн на килограмм - почти что предел. Для совмещения низкой массы с приемлемой эффективностью число находится в районе двух-трёх. Масса изделия может при этом находиться в районе всего 150-200 килограммов, но делается оно сложно и стоит дорого.
Фактическая же эффективность резко ниже, чем в атмосфере. Ни о каких зрелищных ударных волнах и огненных штормах речь не идёт. Тем более речь не идёт о вроде бы принятом в рамках бытового мифа как данность электромагнитном импульсе. Без магнитного поля и разреженной атмосферы его не получить.
Нет даже традиционной иконы атомной эпохи - красивого газового облака. Ни грибообразного, ни какого-либо иного. Очень яркая вспышка моментально перегоревшей лампочки окажется наиболее адекватным сравнением.
Да, нейтронная бомба на одну мегатонну окажется смертельной для живого экипажа на дистанции порядка 300 километров, а на меньших ещё и превратит их космический аппарат в радиоактивный могильник на срок около нескольких суток. Но для скромной одной килотонны дистанция падает до 900 метров для гарантированной комы и смерти и менее полутора километров для полулетальной дозы.
Это при условии, что цели не защищены ничем и никак. Что, как описано выше, совершенно не так. Радиационная защита типичного космического аппарата с живым экипажем на борту чисто конструкционно по умолчанию достаточно серьёзна. При наличии атомного двигателя или реактора - тем более. Ослабление хотя бы на порядок - базовая норма защиты. Слабую боеголовку требуется подрывать чуть ли не вплотную к цели.
Кроме того,
у нейтронных бомб крайне мал срок жизни "на полке". Замену активного вещества требуется проводить раз в несколько лет, не реже. Всё ради того, чтобы в форме нейтронов излучалось хотя бы 40% энергии взрыва, а не 5%, как у обычного ядерного боеприпаса.Именно по этой причине экипажи "Орионов" куда больше страдают от вибрации при орбитальных манёврах, чем от самого факта расстрела сотни-другой килотонн в быстрой последовательности.
Для военных это значит крайне печальную необходимость доставить значимый процент энергии подрыва к цели каким-то иным образом.
К счастью, его предоставляет всё тот же "Орион".
Работы над его приводом довольно быстро упёрлись в необходимость попадать как можно большим количеством испарённого рабочего тела в опорную плиту взрыволёта. Но если готовое техническое решение позволяет расширяющийся конус известного угла расхождения - этот угол можно изменять дальше, в соответствие уже боевой задаче.
Так на свет появилась гаубица касаба. Ядерный боеприпас направленного взрыва, рабочее тело которого передаёт вполне приличную часть энергии на действительно космические расстояния с космическими же скоростями.
Переход на полистирол и другие типы пластиков означал, что срабатывание ядерного импульсного устройства порождает струю плазмы с крайне малым углом расхождения и вполне космическими скоростями истечения.
Для атомной бомбы - порядка 102 км/с. Для термоядерной - до 3530 км/с. В целом, за конец второго тысячелетия получилось обсчитать систему, которая могла отправить в желаемом направлении до 85% энергии взрыва. Разумеется, дальше возникали проблемы с её передачей рабочему телу, и приближением фактических результатов к теоретически доступным. Проблемы достаточно серьёзные, в экспериментах не получалось взять даже 50 км/с. Но теоретически даже у малых зарядов достижима 50% эффективность.
Ценой дальнейшей потери эффективности, до чисел в 5-10% от энергии взрыва, угол расхождения реально уменьшить до 0,1 радиана. Пятикилотонное изделие, таким образом, при 10% эффективности могло бы передать на дальности порядка 1-2 тысяч километров достаточно энергии, чтобы сокрушить более 73 см алюминия.
То есть, в буквальном смысле этого слова пробить достаточно большой космический аппарат вдоль его длинной оси чуть ли не из конца в конец. Радиус пятна накрытия составлял порядка ста метров.
Увеличение мощности с 5 килотонн до 1 мегатонны при 5% эффективности и 20 сантиметрах радиуса блока рабочего тела на дистанции в 10 000 километров при тех же ста метрах радиуса позволяло бы сокрушить в одно удачное попадание даже закрытую противорадиационным щитом колонию О'Нила навылет чуть ли не с любого ракурса - вместе с почвой и жилой застройкой.
На ста тысячах километров эквивалент пробития всё ещё составлял 7,3 см алюминия в пятне радиусом около километра. Вполне достаточно, чтобы сделать неработоспособными практически любые гражданские сооружения на поверхности или орбите.
Но это для минимального угла расхождения.
А что если угол расхождения целенаправленно увеличить?
Ядерный дробовик противоракетной обороны, вот что!
Для расхождения в 0,17 радиан, 85% эффективности передачи энергии, и 10 килотонн, в перевёрнутом конусе высотой 16 км практически моментально (с человеческой точки зрения) сдувало любые космические объекты прочностью "Аполллона" или "Союза". В основании конуса площадью в 6,15 квадратных километров фактическая пробивная способность всё ещё составляла 5 мм алюминия.