Чтение онлайн

ЖАНРЫ

Самосознающая вселенная. Как сознание создает материальный мир
Шрифт:

Квантовый коллапс — это процесс выбора и признания сознательным наблюдателем; в конечном счете существует только один наблюдатель. Это значит, что нам надо разрешить еще один классический парадокс.

Когда завершается измерение?

По мнению некоторых реалистов, измерение завершено, когда классический измерительный прибор, вроде счетчика Гейгера в клетке кошки Шрёдингера, измеряет квантовый объект; оно завершается, когда счетчик щелкает. Заметьте, что если мы принимаем подобное решение, то парадокс двойственного состояния кошки не возникает.

Это напоминает мне одну историю. Два пожилых джентльмена беседовали, и один из них сетовал на хроническую подагру. Другой с определенной гордостью сказал: «Мне не нужно беспокоиться о подагре; я каждое утро принимаю холодный душ». Джентльмен с подагрой насмешливо взглянул на него и ответил: «Значит, у вас взамен хронический холодный душ!»

Эти реалисты

пытаются заменить дихотомию кошки Шредингера дихотомией квантового и классического уровней. Они делят мир на квантовые объекты и классические измерительные приборы. Однако такая дихотомия несостоятельна и совершенно не нужна. Мы можем утверждать, что все объекты подчиняются квантовой физике (единство физики!), и в то же время удовлетворительно отвечать на вопрос: «Когда завершается измерение?»

Чем определяется измерение? Говоря слегка иными словами, когда мы можем говорить, что квантовое измерение закончено? Можно подойти к ответу исторически.

Вернер Гейзенберг, предложивший принцип неопределенности, сформулировал мысленный эксперимент, который далее уточнил Бор. Недавно Дэвид Бом дал описание эксперимента, и я буду его здесь использовать. Предположим, что частица находится в покое в плоскости мишени микроскопа и мы анализируем ее наблюдение с позиции классической физики. Чтобы наблюдать частицу-мишень, мы направляем на нее (с помощью микроскопа) еще одну частицу, которая отклоняется частицей-мишенью на фотографическую пластинку, оставляя на ней след. На основании изучения следа и нашего знания того, как работает микроскоп, мы можем, в соответствии с классической физикой, определить как положение частицы мишени, так и импульс, придаваемый ей в момент отклонения. Конкретные экспериментальные условия не влияют на конечный результат.

В квантовой механике все это меняется. Если частица-мишень — это атом и если мы смотрим на него с помощью электронного микроскопа, в котором электрон отклоняется атомом на фотографическую пластинку (рис. 22), появляются следующие четыре соображения:

1. Отклоняемый электрон следует описывать и как волну (пока он движется от объекта Ок изображению Р), и как частицу (когда он достигает Р и оставляет след T).

2. Вследствие этого волнового аспекта электрона, изображение Р дает нам только распределение вероятности положения объекта О. Иными словами, положение определяется только в границах некоторой неопределенности х.

3. Точно так же, доказывал Гейзенберг, направление следа T дает нам только распределение вероятности импульса Ои, таким образом, определяет импульс только в границах неопределенности р. Используя простую математику, Гейзенберг сумел показать, что произведение двух неопределенностей больше или равно постоянной Планка. Это и есть принцип неопределенности Гейзенберга.

4. В более подробном математическом описании Бор показал, что волновую функцию наблюдаемого атома невозможно определять отдельно от волновой функции электрона, используемого для его наблюдения. В действительности, говорил Бор, волновую функцию электрона невозможно отделить от волновой функции фотографической эмульсии. И так далее. В этой цепочке невозможно провести однозначную линию раздела.

Рис. 22. Микроскоп Бора—Гейзенберга

Несмотря на неопределенность в проведении линии раздела, Бору казалось, что мы должны ее проводить вследствие «необходимого использования классических понятий при интерпретации всех правильных измерений». Бор неохотно признавал, что экспериментальную обстановку следует описывать чисто классическим языком. Следует допускать, что дихотомия квантовых волн заканчивается в измерительном приборе. Однако, как убедительно показал философ Джон Шумахер, все действительные эксперименты содержат в себе второй встроенный микроскоп Гейзенберга: процесс видения следа в эмульсии связан с такого же рода соображением, как то, что привело Гейзенберга к принципу неопределенности (рис. 23). Фотоны от эмульсии усиливаются собственным зрительным аппаратом экспериментатора. Можем ли мы игнорировать квантовую механику нашего собственного зрения? Если нет, то не являются ли наши мозг-ум—сознание неразрывно связанными с процессом измерения?

Рис. 23. Механика зрения. Еще один микроскоп Гейзенберга в действии?

Принадлежит ли кошка к квантовому или классическому миру?

Когда мы задумываемся об этом, становится ясно, что Бор заменял одну дихотомию другой — дихотомию кошки дихотомией мира, разделяемого на квантовые и классические системы. Согласно Бору, мы не можем отделять волновую функцию атома от всего остального

в клетке (различных измерительных приборов для определения распада атома, вроде счетчика Гейгера, бутылки с ядом и даже кошки), и потому линия, которую мы проводим между микромиром и макромиром, оказывается совершенно произвольной. К сожалению, Бор также говорил о необходимости признавать, что измерение с помощью механизма — измерительного прибора — разрешает дихотомию квантовой волновой функции.

Однако любое макроскопическое тело, в конечном счете, представляет собой квантовый объект; не существует такой вещи, как классический объект, если только мы не готовы признавать порочную дихотомию квантового/классического в физике. Верно, что в большинстве ситуаций поведение макроскопического тела можно предсказывать, исходя из правил классической механики. (В таких случаях квантовая механика дает те же математические предсказания, что и классическая механика, — это принцип соответствия, который открыл сам Бор.) По этой причине мы часто приближенно считаем макроскопические тела классическими. Однако процесс измерения — не такой случай, и принцип соответствия к нему не применим. Разумеется, Бор это знал. В своих знаменитых дебатах с Эйнштейном Бор часто привлекал квантовую механику для описания макроскопических тел при измерении, чтобы опровергать острые возражения, выдвигавшиеся Эйнштейном против волн вероятности и принципа неопределенности.

В качестве примера спора между Бором и Эйнштейном рассмотрим ситуацию двухщелевого эксперимента, но с одним дополнительным аспектом. Предположим, что до попадания на двойную щель электроны проходят через одиночную щель в диафрагме — ее цель состоит в точном определении начального положения электронов. Эйнштейн предлагал устанавливать эту первую щель на крайне чувствительных пружинах (рис. 24). Он доказывал, что если первая щель отклоняет электрон к верхней из двух щелей, то в силу принципа сохранения импульса первая диафрагма будет отходить вниз, а если электрон отклоняется вниз, к нижней из щелей, то будет происходить противоположное. Таким образом, измерение отдачи диафрагмы будет говорить нам, через какую щель, в действительности, проходит электрон — то есть давать информацию, невозможную с точки зрения квантовой механики. Если бы первая диафрагма действительно была классической, то Эйнштейн был бы прав. Защищая квантовую механику, Бор указывал, что, в конечном счете, эта диафрагма тоже подчиняется квантовой неопределенности. Поэтому при измерении ее импульса становится неопределенным ее положение. Бор был способен продемонстрировать, что это расширение первой щели фактически уничтожает интерференционную картину.

Рис. 24. Идея Эйнштейна: начальная щель на пружинах для двухщелевого эксперимента. Если перед прохождением через перегородку с двумя щелями (не показана) электроны проходят через щель в диафрагме, установленной на пружинах, то можно ли определять, через какую щель проходит электрон, не уничтожая интерференционную картину?

Однако предположим далее, что действует принцип дополнительности и что иногда макроскопический прибор все же приобретает квантовую дихотомию (как показывает спор Бора—Эйнштейна), но что в другие моменты этого не происходит — как в случае с измерительным прибором. Эта оригинальная идея, именуемая макрореализмом, исходит от блестящего физика Тони Леггетта, чья работа привела к созданию великолепного экспериментального устройства под названием SQUID (СКВИД — Сверхпроводящий Квантово-Интерференционный Детектор).

Обычные проводники проводят электричество, но всегда оказывают некоторое сопротивление прохождению электрического тока, что приводит к потере электрической энергии в виде тепла. По контрасту с этим сверхпроводники позволяют току течь без сопротивления. Если вы создали электрический ток в сверхпроводящем контуре, то этот ток будет течь практически вечно — даже без источника энергии [27] . Сверхпроводимость обусловлена особой корреляцией между электронами, распространяющейся по всему сверхпроводнику. Для того чтобы вырваться из этого коррелированного состояния, электронам требуется энергия, и потому такое состояние относительно невосприимчиво к беспорядочному тепловому движению, присутствующему в обычном проводнике [28] .

27

Конечно, при условии, что энергия не рассеивается в форме магнитного поля. — Прим. пер.

28

В большинстве случаев явление сверхпроводимости наблюдается при крайне низких температурах (вблизи 273° К, или «абсолютного нуля»), когда хаотическое тепловое движение практически отсутствует. — Прим. пер.

Поделиться с друзьями: