Секретные результаты опытов клонирования. Сколько их среди нас?
Шрифт:
В настоящее время клонирование человеческих эмбрионов запрещено в США и Японии, в России также наложен пятилетний мораторий на генетические эксперименты такого плана. Остальные европейские страны в ближайшем будущем планируют принять законопроекты о запрете клонирования человека….
По мнению Л. И. Корочкина, нельзя разработать единственно правильный метод клонирования. Ученый считает, что к клонированию различных организмов должен существовать свой собственный подход: «У некоторых организмов, например у известного кишечного паразита аскариды, генетический материал в будущих зародышевых клетках остается неизменным в ходе развития, а в других соматических клетках выбрасываются целые большие фрагменты ДНК — носителя наследственной
В настоящее время такое клонирование официально разрешено в Великобритании. В 2001 г. решением суда подобные эксперименты были запрещены, но правительство страны подало апелляцию, которая была удовлетворена.
Клонирование животных не запрещено ни в какой стране.
Особенности клонирования
На протяжении многих тысячелетий разведения животных человеку, видимо, не раз приходила в голову мысль о хозяйственной ценности животных — быстроходных лошадей, коров, свиней, овец, кур-несушек. Многие, наверное, не раз задумывались о смелой идее сделать таких животных «бессмертными» способом воспроизводства их в следующих поколениях в виде совершенно идентичных копий.
В действительности животные умирали, оставив после себя потомство, причем ни один из представителей не был идентичен ни одному из своих родителей также, как и его самого не повторял ни один из потомков последующих поколений.
Воспроизводство организмов, полностью идентичных уникальной по продуктивности особи, становится возможным лишь при условии, что генетическая информация матери будет передана дочерям без каких-либо изменений. Однако при естественном половом размножении этому препятствует мейоз. В процессе мейоза несозревшая яйцеклетка, характеризующаяся двойным набором хромосом (диплоидная клетка), делится дважды, в результате чего возникают четыре гаплоидные клетки с одинарным набором хромосом.
Три из этих клеток дегенерируют, а четвертая, имеющая наибольший запас питательных веществ, становится яйцеклеткой. В силу своей гаплоидности у многих животных она развивается в новый организм. Это происходит в результате ее слияния с гаплоидным сперматозоидом (оплодотворение). Разумеется, организм, развивающийся из оплодотворенной клетки, приобретет признаки, определяющиеся взаимодействием материнской и отцовской наследственности. Таким образом, при половом размножении повторение матери в потомстве не представляется возможным.
Можно ли, несмотря на данную закономерность, сделать так, чтобы клетка развивалась только с материнским диплоидным набором хромосом? Теоретически эту задачу можно решить двумя способами: хирургическим и терапевтическим….
Ученые США сообщают о растущем числе случаев ухудшения здоровья клонированных животных. Этот факт может послужить предупреждением тем, кто стремится к человеческому клонированию. В интервью газете «Нью-Йорк тайме» эксперты в области клонирования пояснили, что у многих клонированных животных наблюдаются сердечные и легочные заболевания, а также нарушения функционирования иммунной системы.
Следует отметить, что второй метод был открыт значительно раньше русскими учеными. Зоолог Московского университета А. А. Тихомиров выяснил, что яички тутового шелкопряда под химическим воздействием начинают развиваться без оплодотворения. Однако это развитие останавливалось, поскольку эмбрионы погибали еще до вылупления личинок из яиц.
В 30-х гг. XX в. Б. Л. Астауров провел ряд иследований, которые впоследствии получили мировую известность, и подобрал термическое воздействие, которое одновременно активизировало неоплодотворенное яйцо к развитию и останавливало стадию мейоза. Таким образом диплоидное ядро яйцеклетки не превращалось в гаплоидное. Развитие
с ядром, оставшимся диплоидным, заканчивалось вылуплением личинок с генотипом, аналогичным материнскому, включая пол. Таким образом, в результате амейотического партеногенеза были выведены первые генетические копии, идентичные матери.Количество вылупившихся гусениц определялось жизнеспособностью матери. По этой причине у «чистых» пород вылупление гусениц оставалось в пределах нескольких процентов, а у более жизнеспособных гибридов оно достигало 50 %. Несмотря на успешность эксперимента, автор этого метода был разочарован, поскольку потомство отличалось пониженной жизнеспособностью на эмбриональной и постэмбриональной стадиях развития (гусеница, куколка, бабочка). Развитие гусениц было неравномерным, многие из них были уродливыми, а свитые ими коконы существенно различались по массе.
Позже метод был усовершенствован путем гибридизации между селекционными линиями. Таким образом, появилась возможность повышения жизнеспособности клонов, однако довести до нормального уровня другие характеристики не удалось. Масса партеногенетических коконов не превышала 82 % от массы нормальных коконов этого генотипа.
Несколько позже были установлены причины партеногенетической депрессии и выведены новые клоны самок, отличающиеся высокой жизнеспособностью. Вскоре с помощью методов, позволяющих накапливать гены партеногенеза, были выведены и клоны самцов с высоким уровнем жизнеспособности. Следует отметить, что депрессия у тутового шелкопряда значительно меньше, чем у млекопитающих животных. У последних яйцеклетка с диплоидным ядром, полученны в результате слияния двух женских или двух мужских гаплоидных ядер, не развивается в организм.
В результате скрещивания жизнеспособных самцов с клонами их «матерей» или склонными к партеногенезу самками других клонов было выведено потомство с большей склонностью к партеногенезу. От наиболее жизнеспособных самок получали новых клонов.
В результате многолетнего отбора в генотипе селектируемых клонов было накоплено большое число генов, обладающих высокой жизнеспособностью и склонностью к партеногенезу. Вылупление гусениц достигло 90 %, а их жизнеспособность увеличилась до 100 %. Следует отметить, что клоны опередили в этом отношении обычные породы и даже гибриды. В дальнейшем было произведено скрещивание двух генетически отличающихся клонов разных рас и от лучших гибридных самок были выведены наиболее жизнеспособные клоны.
Однако, несмотря на важное научное значение полученных результатов, для практики вышеописанные клоны были непригодны. Самки шелкопряда съедают на 20 % больше листа шелковицы, в то время, как их коконы содержат на 20 % меньше шелка. Таким образом, более выгодным с экономической точки зрения было бы разведение только самцов. А возможно ли клонирование самцов? Этот вопрос важен не только в шелководстве, но и во многих других отраслях животноводства.
Животный мир разделен на две группы. У одной группы женский пол определяется наличием в генотипе двух одинаковых половых хромосом (XX), а мужской — разных (XY). Другая группа характеризуется женскими хромосомами XY и мужскими XX. В первую группу входят человек, сельскохозяйственные животные, а также ряд других менее высокоорганизованных животных, например муха дрозофила. Ко второй группе относятся некоторые виды бабочек, в том числе и тутовый шелкопряд….
По мнению, ученых, клонирования в большинстве случаев вызывает сбои случайного характера на уровне индивидуальных генов. Например, некоторые клонированные мыши сначала развивались соответственно норме, а затем резко набирали вес.
Неудивительно, что из неоплодотворенных яиц сельскохозяйственных животных нельзя получить самца, поскольку в женском ядре нет хромосомы Y. Таким образом, клонирование самца возможно только путем пересадки его диплоидного яйца, взятого из пригодной для данной цели ткани тела, в безъядерную яйцеклетку.