Чтение онлайн

ЖАНРЫ

Шаг за шагом. От детекторного приемника до супергетеродина
Шрифт:

Здесь уместно заметить, что существуют две основные схемы детекторных каскадов: параллельная и последовательная (рис. 109). В первой из них контур, детектор и нагрузка детектора соединены последовательно, а во второй все эти элементы соединены параллельно. Последовательная схема имеет некоторые преимущества (детектор слабее шунтирует контур), и поэтому там, где возможно, стараются применять ее.

В промышленных приемниках специальную лампу для детектора используют редко. Необходимый для детектирования диод имеется в некоторых усилительных лампах (комбинированные лампы), например в пентоде, а точнее, в диод-пентоде 1Б2П, двойном диод-пентоде 6Б8С, двойном диод-триоде 6Г2С и др. В супергетеродин ном приемнике, который нам предстоит построить, будет использована лампа 6И1П — триод-гептод. Именно для нее мы установили на панели ВЧ (см. чертеж 2) девятиштырьковую ламповую панельку.

Триодную часть этой лампы можно временно использовать в качестве диодного детектора, соединив ее управляющую сетку с анодом. В этом случае сетка и анод будут действовать как один электрод, и лампа фактически превратится в диод (рис. 108, 109).

Рис. 108. В детекторе в качестве вентиля можно применить любую усилительную лампу. Чтобы эта лампа не оказалась «запертой», ее управляющую сетку (а если есть другие сетки, то и их тоже) необходимо соединить с анодом, превратив тем самым усилительную лампу в обычный диод.

Рис. 109. Существуют две схемы детекторов: последовательная и параллельная.

Использовать для детектирования только анод и катод лампы, оставив управляющую сетку никуда не подключенной, ни в коем случае нельзя, так как при этом лампа окажется запертой. Попутно нужно отметить, что многоэлектродная лампа — пентод, тетрод или гептод — будет заперта, если не подать питание на экранную сетку или не заземлить антидинатронную сетку, то есть иными словами, если будет закрыт путь для постоянной составляющей тока какой-либо сетки и попадающие на нее электроны не смогут вернуться к катоду.

Анод работающего в детекторе триода можно было бы вообще никуда не подключать и для детектирования использовать участок катод — управляющая сетка. Последняя в этом случае будет играть роль анода двухэлектродной лампы, а анод триода мы как бы «экономим» (рис. 110).

Рис. 110. Для детектирования можно использовать сеточную цепь лампы (сетка — анод диода), а в анодной цепи выделить усиленный сигнал.

Мы применили триод для детектирования только потому, что в нашем распоряжении не было диода. А нельзя ли воспользоваться этим обстоятельством и сделать так, чтобы триод не только детектировал, но и усиливал сигнал? Оказывается, можно. Для этого достаточно включить анодную нагрузку и подать на анод (конечно, отключив его от сетки!) постоянное напряжение (рис. 110, лист 150). При этом так же, как и раньше, детектирование сигнала будет происходить на участке сетка — катод лампы, в ее сеточной цепи будет протекать пульсирующий ток, который, проходя по сопротивлению нагрузки детектора, создаст на нем соответствующее напряжение. Это напряжение будет управлять анодным током лампы, и в результате этого анодный ток будет изменяться так же, как и ток в цепи детектора. Это значит, что анодный ток можно будет разделить на постоянную, НЧ и ВЧ составляющие, так же как мы это делали с током в цепи детектора.

Благодаря усилительным свойствам лампы с ее анода можно снять переменное напряжение НЧ значительно больше, чем получается на нагрузке детектора в цепи управляющей сетки, то есть в рассматриваемом каскаде происходит не только детектирование, но и усиление сигнала. Детекторный каскад, в котором детектирование осуществляется в сеточной цепи усилительной лампы, а анодная цепь этой лампы используется для усиления низкой частоты, называется сеточным детектором (рис. 111).

Рис. 111. Усиление сигнала в сеточном детекторе происходит так же, как и в обычном усилительном каскаде.

На чертеже 13 показана практическая схема сеточного детектора, собранного на триодной части лампы 6И1П. Применив этот каскад вместо

обычного диодного детектора, можно заметно повысить чувствительность приемника. Входящие в каскад детали имеют то же назначение, что и в обычном детекторе или усилителе НЧ. Для того чтобы ВЧ сигнал не попал на вход усилителя НЧ, в анодную цепь детекторной лампы включен специальный фильтр, состоящий из сопротивления R10, преграждающего путь ВЧ составляющей анодного тока ко входу усилителя НЧ, и конденсаторов С"26 и С"'26, замыкающих ВЧ составляющую анодного тока на катод.

Потенциометр R12 теперь включен непосредственно в сеточную цепь лампы Л3 и, таким образом, выполняет роль сопротивления утечки. Поэтому необходимость в постоянном сопротивлении R12 отпала, и его можно из схемы исключить.

Несмотря на то что сеточный детектор дает дополнительное усиление сигнала, он не нашел применение в промышленных приемниках, так как этот детектор создает значительные нелинейные искажения. Одна из причин этих искажений заключается в том, что лампа всегда работает с сеточными токами, так как в противном случае не могло бы осуществляться детектирование сигнала. Что касается диодного детектора, то он работает практически без искажений лишь в том случае, если подводимое к нему высокочастотное напряжение превышает 1–2 в. В то же время напряжение принятого сигнала в антенной цепи (между гнездами «антенна» — «земля») обычно не превышает нескольких сотен и даже десятков микровольт, и только местные мощные станции создают в антенной цепи напряжение в несколько милливольт. Из сказанного следует, что для нормальной работы диодного детектора поступающий в антенну сигнал должен быть усилен во много тысяч раз. Благодаря резонансным свойствам входной контур несколько повышает напряжение сигнала (практически в пять — пятнадцать раз), однако основное усиление осуществляется ламповыми усилителями ВЧ.

УСИЛИТЕЛЬ ВЧ

Прежде всего необходимо отметить, что ламповый усилитель высокой частоты в принципе не отличается от любого другого усилительного каскада. В нем также имеется анодная нагрузка, цепь утечки управляющей сетки и цепь для подачи отрицательного смещения на эту сетку. Экранная сетка лампы соединяется с катодом через конденсатор, и на нее подается положительное напряжение. Некоторое отличие усилителя НЧ связано с тем, что на высокой частоте емкостное сопротивление конденсатора резко уменьшается и поэтому почти во всех цепях усилителя ВЧ: в цепи экранной сетки, в цепи, соединяющей один каскад с другим, и т. п. — используются конденсаторы значительно меньшей емкости, чем в усилителе НЧ.

Усиливаемый сигнал на вход первого каскада усилителя ВЧ обычно подается с входного колебательного контура, который, в свою очередь, связан с антенной. В качестве анодной нагрузки в усилителе ВЧ желательно также использовать контур, настроенный на частоту принимаемой станции: мы уже отмечали, что, чем больше настроенных колебательных контуров, тем лучше избирательность приемника. Кроме того, усилительный каскад с контуром в качестве нагрузки даст намного большее усиление, чем каскад с обычным сопротивлением. Это определяется резонансными свойствами самого контура, а также тем, что катушка Lк практически не оказывает сопротивления анодному току и не снижает постоянного напряжения на аноде лампы (рис. 112).

Рис. 112. В качестве анодной нагрузки усилителя ВЧ лучше всего применить колебательный контур, настроенный на частоту принимаемой станции.

Возможность использования колебательного контура в качестве анодной нагрузки основана на том, что на резонансной частоте контур, включенный в анодную цепь, ведет себя как обычное сопротивление и, как правило, сопротивление очень большое — десятки и сотни ком. Необходимо указать, что это относится только к параллельному контуру — резонансное сопротивление последовательного контура чрезвычайно мало и обычно составляет несколько ом (листы 151, 152).

Поделиться с друзьями: