Шаг за шагом. Транзисторы
Шрифт:
В этом месте, по-видимому, многие из вас хотят задать вопрос: если все так сложно и все так мрачно, то как же работают на коротких волнах такие, например, транзисторные приемники, как «Спидола», «Спорт-2», «Соната», «Сувенир» и другие? Ответ прост: в этих приемниках применен совершенно особый, еще не знакомый нам супергетеродинный принцип радиоприема.
Сущность его состоит в следующем. В каком бы диапазоне ни велся прием, какую бы станцию мы ни принимали, ее сигнал в приемнике прежде всего преобразуется в новый сигнал, имеющий стандартную, для всех случаев одинаковую частоту: 465 кгц. А дальше уже усиливается этот двойник сигнала принимаемой станции, усиливается сигнал промежуточной частоты (ПЧ). На промежуточной частоте происходит и очистка от мешающих соседних станций. Теперь их частоты и для
После того как с таким блеском предстали перед нами достоинства супергетеродинного приема, остается доказать, что этот принцип в действительности может быть реализован, что можно сигнал любой принимаемой станции превратить в сигнал стандартной промежуточной частоты.
Нажмите две близкие клавиши рояля — сначала по отдельности, а затем вместе. Внимательно прислушавшись, вы обнаружите, что при совместном звучании клавиши создают какой-то низкий, хрипловатый и довольно слабый призвук, которого не дает ни одна из них в отдельности. Этот призвук появляется в результате одновременного искажения двух сигналов, в данном случае — двух самостоятельных звуков, которые дают две одновременно нажатые клавиши.
Дело в том, что наше ухо в какой-то степени ведет себя как полупроводниковый диод: оно имеет нелинейную характеристику (см. стр. 161) и слегка искажает форму звукового сигнала, искажает спектр звука. Когда в ухо попадает только один звук, то в результате искажений появляются его гармоники, составляющие с более высокими и всегда кратными частотами. Когда же искажениям подвергаются одновременно два звука, то, кроме гармоник каждого из них, появляются синусоидальные колебания с так называемыми комбинационными частотами — суммарной и разностной (промежуточной).
Поясним это числовым примером. Допустим, что нажата клавиша, издающая звук с частотой 440 гц («ля» первой октавы). В результате искажений этого звука появятся его гармоники — 880 гц, 1320 гц, 1760 гц и т. д. Аналогично звук с частотой 523 гц («до» второй октавы) даст гармоники 1046 гц, 1569 гц, 2092 гц и т. д. Когда же наше ухо подвергнет искажениям одновременно оба звука, то, кроме всех этих гармоник, появятся многочисленные комбинационные частоты и в их числе — синусоидальные колебания с суммарной частотой 963 гц (523 + 440) и разностной (промежуточной) частотой 83 гц (523–440).
Детально пояснить причину появления комбинационных частот довольно трудно: для этого нужны длинные математические выкладки и немало новых, сравнительно сложных понятий. Поэтому всем желающим убедиться в том, что разностная (промежуточная) частота действительно возникает, можно посоветовать лишь нажимать на две близкие клавиши рояля и внимательно прислушиваться к их совместному звучанию.
Есть, правда, еще один способ удостовериться в том, что при одновременном искажении двух сигналов появляется разностная (промежуточная) частота: достаточно включить какой-нибудь супергетеродинный приемник и убедиться в том, что он действительно работает. Лучшего доказательства существования промежуточной частоты и не придумаешь. Потому что в супергетеродине сам сигнал принимаемой станции, как правило, перестает существовать уже в первом каскаде. А дальше усиление, отделение от помех и детектирования производится с рожденным в самом приемнике сигналом промежуточной частоты.
Блок-схема супергетеродинного приемника приведена в верхней левой части рис. 119, листок А. Принятый сигнал с частотой fсиг подается на преобразователь частоты. Туда же подается вспомогательный сигнал с частотой fг от собственного маломощного генератора, расположенного в самом приемнике. Этот генератор называется гетеродином, а частоту его можно менять переключением катушек и изменением емкости конденсатора настройки. Преобразователь частоты соединен с усилителем ПЧ, все
контуры которого раз и навсегда настроены на промежуточную частоту fпр.Рис. 119. При одновременном искажении двух сигналов возникают составляющие с разностной и суммарной частотами.
Мы уже говорили, что на коротких и даже на средних волнах входной контур может пропустить сразу несколько сигналов. Встретившись в преобразователе частоты с этими прошедшими через входной контур сигналами, переменное напряжение гетеродина создаст с ними разностные частоты. Но только одна из этих разностных частот, принадлежащая только одной, нужной нам станции, будет равна стандартной промежуточной частоте, на которую настроены все контуры приемника. И только эту разностную частоту усилитель ПЧ пропустит к детектору.
Если вы захотите принять другую станцию, то нужно будет изменить частоту гетеродина так, чтобы он создал сигнал стандартной промежуточной частоты уже с этой другой станцией. Изменяя частоту гетеродина, мы будем получать промежуточную частоту 465 кгц, то с одной, то с другой, то с третьей станции, то есть будем перестраивать приемник с одной станции на другую.
Несколько слов о самом главном элементе супергетеродина — о преобразователе частоты. Этот элемент должен обязательно искажать форму сигнала так, как, скажем, наше ухо искажает звук. Без этих искажений в принципе не могут появиться новые составляющие, в том числе не может появиться и разностная частота. Иногда роль преобразователя частоты выполняет диод, но чаще — транзистор, работающий где-то в районе загиба входной характеристики. Только в этом случае оба сигнала — поступивший из входной цепи и сигнал собственного гетеродина — будут искажаться и дадут разностную частоту.
Кстати, о слове «искажения». В данном случае его, по-видимому, нельзя считать удачным, хотя оно и правильно отражает все, что происходит с сигналами. Подобно тому, как наше ухо искажает звук с «хорошими намерениями» и в результате таких искажений у звука лишь появляется приятная тембровая окраска, так и преобразователь обычно не искажает, не портит низкочастотную огибающую принятого сигнала, не портит конечную продукцию приемника — звук. И когда дело касается создания промежуточной частоты, то никогда не говорят об искажении сигналов, а называют этот процесс преобразованием частоты.
Уделив так много внимания принципу супергетеродинного приема, мы сейчас совершим резкий поворот и оставим в стороне практические схемы транзисторных супергетеродинов.
Во-первых, постройка такого приемника связана со многими трудными для любителя операциями, в частности — с настройкой большого числа контуров. Во-вторых, каждый желающий построить транзисторный супергетеродин сможет воспользоваться одним из многих его подробных описаний, имеющихся в радиолюбительских брошюрах и журналах. И, наконец, третье. Совсем не обязательно строить приемник для того, чтобы на практике посмотреть, как осуществляется преобразование частоты. Понаблюдать за этим интересным процессом можно и в каком-нибудь другом электронном приборе, например в металлоискателе или электромузыкальном инструменте — терменвоксе.
Этот инструмент получил свое название по имени изобретателя — советского радиоинженера Льва Термена. Он построил терменвокс еще лет пятьдесят назад, и с тех пор этот родоначальник электронной музыки обошел весь мир. Лев Термен демонстрировал терменвокс Ленину, и, как рассказывают очевидцы этой демонстрации, Владимир Ильич проявил большой интерес к одному из первенцев электроники.
Принцип действия терменвокса поясняет рис. 120.
Рис. 120. В терменвоксе и металлоискателе используется изменение разностной частоты при расстройстве одного из генераторов.