Чтение онлайн

ЖАНРЫ

Штурм абсолютного нуля
Шрифт:

Относительно большого повышения максимальной критической температуры удалось добиться в 50–х годах с появлением сверхпроводящих сплавов. А в 1973 году промелькнула надежда освободиться из плена гелиевых температур, то есть температур, достижимых с помощью жидкого гелия. Был получен сверхпроводящий сплав ниобий — германий с критической температурой 23,4К.

Температура кипения водорода 20,4К. Значит, принципиально возможно охладить сплав ниобий- германий с помощью жидкого водорода. Но работать со сверхпроводниками в области температур, близких к критическим, невыгодно, а подчас невозможно из-за снижения

критического магнитного поля и критического тока. Ведь при критической температуре критическое магнитное поле и критический ток равны нулю и увеличиваются по мере отхода от критической в сторону более низких температур.

Установленный в 1973 году рекорд критической температуры 23,4 К в течение долгих лет оставался непревзойденным. У некоторых физиков этот период получил название «смутного времени сверхпроводимости».

В чем причина такого застоя?

Теоретические расчеты показывают, что сверхпроводимость, возникающая благодаря межэлектронному притяжению в результате взаимодействия электронов с кристаллической решеткой металла, принципиально осуществима при критической температуре до 25–30 К.

В то время исследователи уже приблизились к этому пределу, и надо было изыскивать другие возможности повышения критической температуры.

«А может быть, стоит опять прибегнуть к помощи… лягушки?» — подумали ученые.

Ведь, препарируя лягушку, итальянский профессор Луиджи Гальвани пришел к мысли о существовании животного электричества.

Можно без преувеличения сказать: именно с опытов Гальвани началась история современной электротехники.

Вот что сказал по этому поводу во вступительном слове на X Международной конференции по физике низких температур академик П. Л. Капица:

«Мы не должны забывать, что в природе, в частности в живых организмах, металл не используется для передачи электрических импульсов. Наши нервы, по которым проходят электрические импульсы, имеют не металлические свойства, и значит, что в природе существует механизм, который может передавать электрический импульс по среде, имеющей полимерную структуру».

Теоретическая разработка проблемы высокотемпературной сверхпроводимости началась в 1964 году с появлением работ американского физика

В. Литтла и крупного советского физика академика Виталия Лазаревича Гинзбурга.

Теоретическая модель Литтла основана на использовании полимеров. Напомним, что полимеры — это вещества, состоящие из макромолекул, то есть молекул, содержащих большое количество (вплоть до десятков и тысяч) валентно связанных атомов.

Эта модель представляет собой полимер с главной осью, вдоль которой перемещаются электроны проводимости. От главной оси отходят боковые ветви, причем содержащиеся в них электроны способны совершать колебательные движения.

Электрон проводимости посредством кулоновских сил вызывает смещение электронов в боковой ветви. В результате этого смещения в боковой ветви происходит поляризация, и на ближайшем к глазной оси конце боковой ветви наводится положительный

заряд. Этот заряд притягивает к себе другой электрон главной оси.

Получается картина, схожая с той, которую мы наблюдаем при сверхпроводимости в обычном проводнике. Но роль кристаллической решетки теперь играют боковые ветви полимера.

Электроны на боковых ветвях могут быть более подвижными, чем ионы кристаллической решетки, и притяжение, которое они создают между электронами на главной оси полимера, проявляется сильней, чем в обычном сверхпроводнике. По идее это должно было бы привести к высокотемпературной сверхпроводимости.

Хотя сейчас уже открыты полимерные сверхпроводники, их критическая температура очень мала.

Другой механизм сверхпроводимости, не связанный со взаимодействием электронов с решеткой кристалла, был предложен В. Л. Гинзбургом.

Если на поверхность тонкого металлического образца нанести слой диэлектрика, то взаимодействие между электронами в металле усиливается в результате относительно легкой поляризуемости диэлектрика, что может привести к высокотемпературной сверхпроводимости.

Представьте себе этакий «сандвич» (это название утвердилось и в науке), состоящий из тонкой металлической пленки, с обеих сторон покрытой слоями диэлектрика.

Движущиеся в металле электроны проводимости поляризуют диэлектрик, создавая поблизости избыточный положительный заряд, который обуславливает возможность притяжения электронов.

Большие надежды ученые связывали с металлическим… водородом.

Может ли вообще существовать металлический водород?

Современная наука дает положительный ответ на этот вопрос.

Каждое вещество, подвергаемое действию все возрастающего давления, должно, в конце концов, перейти в металлическое состояние.

Идея о переходе молекулярного водорода в металлическое состояние имеет многолетнюю историю. Она была высказана в связи с изучением структуры так называемых водородных планет Юпитера и Сатурна, твердая оболочка которых состоит, по — видимому, в основном из водорода и гелия.

Предполагается, что источником энергии, излучаемой водородными планетами, является гравитационное сжатие, сопровождаемое переходом водорода в металлическое состояние.

Полный расчет уравнений состояния водорода в структуре водородных планет сделал в 1964 году А. А. Абрикосов.

Несоизмеримо возрос интерес к металлическому водороду в конце 60–х годов, когда произведенные расчеты показали, что это вещество может перейти в сверхпроводящее состояние при температуре значительно более высокой, чем все ранее известные сверхпроводники.

Правда, на пути к металлическому водороду немало технических трудностей.

Надо не только сжать исходное вещество давлением порядка двух — трех миллионов атмосфер. Необходимо перевести металлический водород, как говорят физики, в метастабильное состояние, то есть он должен сохранить свои свойства и при нормальном атмосферном давлении.

Вместе с тем внимание исследователей высокотемпературной сверхпроводимости привлекло и другое водородоподобное соединение, одной из составных частей которого являются… дырки.

Поделиться с друзьями: