Чтение онлайн

ЖАНРЫ

Системное программирование в среде Windows

Харт Джонсон М.

Шрифт:

Описанная совокупность программ не только позволяет оценить зависимость производительности от выбора конкретного типа объекта синхронизации, но и говорит о следующих вещах:

• При тщательном проектировании программы в некоторых случаях можно вообще обойтись без использования синхронизации. 

• В простейших ситуациях, например, когда требуется инкрементировать значение совместно используемой переменной, достаточно использовать функции взаимоблокировки.

• В большинстве случаев использование мьютексов обеспечивают более высокое быстродействие программы по сравнению с использованием объектов CS.

• Обычная методика заключается в определении структуры данных аргумента потока таким образом, чтобы она содержала информацию

о состоянии, которая должна поддерживаться потоком, а также указатель на мьютекс или иной объект синхронизации.

Программа 9.1. statsMX: поддержка статистики потоков

/* Глава 9. statsMX.c */

/* Простая система "хозяин/рабочий", в которой каждый рабочий поток */

/* информирует главный поток о результатах своей работы для их отображения.*/

/* Версия, использующая мьютекс. */

#include "EvryThng.h"

#define DELAY_COUNT 20

/* Использование: statsMX nthread ntasks */

/* Запускается "nthread" рабочих потоков, каждой из которых поручается */

/* выполнение "ntasks" единичных рабочих заданий. Каждый поток сохраняет*/

/* информацию о выполненной работе в собственной неразделяемой ячейке */

/* массива, хранящего данные о выполненной потоком работе. */

DWORD WINAPI worker(void *);

typedef struct _THARG {

 int thread_number;

 HANDLE *phMutex;

 unsigned int tasks_to_complete;

 unsigned int *tasks_complete;

} THARG;

int _tmain(DWORD argc, LPTSTR argv[]) {

 INT tstatus, nthread, ithread;

 HANDLE *worker_t, hMutex;

 unsigned int* task_count, tasks_per_thread;

 THARG* thread_arg;

 /* Создать мьютекс. */

 hMutex = CreateMutex(NULL, FALSE, NULL);

 nthread = _ttoi(argv[1]);

 tasks_per_thread = _ttoi(argv[2]);

 worker_t = malloc(nthread * sizeof(HANDLE));

 task_count = calloc(nthread, sizeof(unsigned int));

 thread_arg = calloc(nthread, sizeof(THARG));

 for(ithread = 0; ithread < nthread; ithread++) {

/* Заполнить данными аргумент потока. */

thread_arg[ithread].thread_number = ithread; 

thread_arg[ithread].tasks_to_complete = tasks_per_thread;

thread_arg[ithread].tasks_complete = &task_count[ithread];

thread_arg[ithread].phMutex = &hMutex;

worker_t[ithread] = (HANDLE)_beginthreadex (NULL, 0, worker, &thread_arg[ithread], 0, &ThId);

 }

 /* Ожидать завершения рабочих потоков. */

 WaitForMultipleObjects(nthread, worker_t, TRUE, INFINITE);

 free(worker_t);

 printf("Выполнение рабочих потоков завершено\n");

 for (ithread = 0; ithread < nthread; ithread++) {

_tprintf(_T("Количество
заданий, выполненных потоком %5d: %6d\n"), ithread, task_count[ithread]);

 }

 return 0;

 free(task_count);

 free(thread_arg);

}

DWORD WINAPI worker(void *arg) {

 THARG * thread_arg;

 int ithread;

 thread_arg = (THARG*)arg;

 ithread = thread_arg->thread_number;

 while (*thread_arg->tasks_complete < thread_arg->tasks_to_complete) {

delay_cpu(DELAY_COUNT);

WaitForSingleObject(*(thread_arg->phMutex), INFINITE);

(*thread_arg->tasks_complete)++;

ReleaseMutex(*(thread_arg->phMutex));

 }

 return 0;

}
 

Для изучения поведения различных вариантов реализации можно воспользоваться программой timep из главы 6 (программа 6.2). Тесты, которые проводились на системах, не загруженных никакими другими задачами, и состояли в выполнении 250 000 единичных рабочих заданий с использованием 1,2,4, 8, 16, 32, 64 и 128 потоков, показали следующие результаты:

• При небольшом количестве потоков (4 и менее) для выполнения каждого из вариантов реализации NS (отсутствие синхронизации), IN (функции взаимоблокировки) и CS (объекты CRITICAL_SECTION) требуется примерно одно и то же время. Вариант CS может оказаться несколько более медленным (10-20 процентов), демонстрируя типичное замедление работы программ, использующих синхронизацию. Вместе с тем, для выполнения варианта MX (мьютексы) требуется в два-три раза больше времени. 

• Производительность варианта CS на однопроцессорных системах при использовании 5 и более потоков не всегда изменяется пропорционально количеству потоков. Картина может меняться при переходе от одной NT5-системы к другой, однако, как свидетельствуют данные, для каждой конкретной системы результаты согласуются между собой. В случае некоторых систем истекшее время удваивается при переходе к следующему члену ряда 1, 2, 4 и так далее, соответствующему количеству используемых потоков, но в одном случае (Windows 2000, процессор Pentium с частотой 1 ГГц, портативный компьютер) оно составляло (в секундах) 0.5, 1.0, 2.0, 4.0, 14.9, 16.0, 32.1 и 363.4, а в другом (Windows 2000, процессор Pentium 500 МГц, на стольный компьютер) — 1.2, 2.3, 4.7, 9.3, 42.7, 101.3, 207.8 и 1212.5 секунд. Как правило, резкое изменение поведения происходит тогда, когда количество потоков начинает превышать 4 или 8, но производительность остается приемлемой, пока количество потоков не превышает 128.

• В случае однопроцессорных систем вариант MX уступает варианту CS, причем отношение показателей производительности варьирует в пределах от 2:1 до 10:1 в зависимости от типа системы.

• В случае SMP-систем производительность может резко ухудшаться в десятки и сотни раз. Интуитивно кажется, что с увеличением количества процессоров производительность может только повышаться, но в силу механизмов внутренней реализации процессоры конкурируют между собой за право владения блокировками и обращения к памяти, и это объясняет, почему результаты для вариантов MX и CS оказываются практически одинаковыми. В случае объектов CS некоторого улучшения производительности удавалось добиться за счет тонкой настройки спин-счетчиков, о чем говорится в одном из следующих разделов.

Поделиться с друзьями: