Скрытые возможности нашего мозга
Шрифт:
А если разобьет паралич или нарушится легочная моторика?.. Тем более когда за «агрессором» еще и откроют «сезон охоты» агенты иммунной системы – лейкоциты и Т-киллеры? Даже при условии совершенно правильной их работы, без учета возможных (и встречающихся в нашем мире все чаще) аутоиммунных реакций? Если подумать, выходит, что допускать, чтобы они устраивали себе «охотничьи угодья» прямо в мозгу, и впрямь нельзя!
Вот почему клеткам иммунитета, как и инфекциям любого рода, путь в ткани головного и спинного мозга заказан. Кроме того, гематоэнцефалический барьер защищает нервные ткани от токсинов и продуктов распада, содержащихся в крови. Фактически он не «подпускает» к центральной нервной системе ничего лишнего, способного нарушить
Одновременно он отражает абсолютное большинство внешних атак на эту среду. А все это в совокупности обеспечивает определенную его независимость от состояния иммунитета и множества других процессов в организме.
Как же такое вообще возможно – чтобы все необходимое поступало к клеткам из крови беспрепятственно, а ничего ненужного не просочилось?
Первый рубеж гематоэнцефалической «обороны» мозга образован особой плотностью стенок питающих его капилляров. Не секрет, что стенки сосудов в масштабах всего тела обладают известной проницаемостью. Ведь невозможно представить себе систему сосудов, где к каждой клетке подводил бы отдельный капилляр, не правда ли? Их число зашкалило бы за десятый миллиард уже при подсчете на одной руке от кисти до локтя! Стало быть, каждое ответвление сосуда должно каким-то образом снабжать питательными веществами крови как минимум несколько сотен окружающих клеток!
На самом деле, каждый капилляр успевает удовлетворить потребности куда большего их числа. И все благодаря тому, что его стенки свободно проницаемы для питательных компонентов и белков – захватчиков на поверхности клеточных мембран. Проницаемость эта не везде одинакова и может варьировать в зависимости от типа тканей. Тем не менее до полной «глухоты» она изменяется только в сосудах, подводящих непосредственно к мозгу.
Клетки сосудистых стенок, проходящих через ткани центральной нервной системы, располагаются по принципу черепицы – один слой частично перекрывает элементы другого. Помимо плотности прилегания, у клеток мозговых капилляров есть еще одна особенность. Они содержат гораздо больше митохондрий, чем другие эндотелиальные (выстилающие стенку сосудов) клетки. Из чего следует, что обменные и энергетические процессы в них проходят гораздо интенсивнее.
Под слоем эндотелиалыных клеток самой сосудистой стенки имеется дополнительная, характерная только для структуры гематоэнцефалического барьера, базальная мембрана. Причем трехслойная. Она выполняет ту же функцию, что и рыбачья сеть, только отлавливает не рыбу, а молекулы определенных размеров… Любопытно также, что митохондрий-то в клетках мозговых сосудов больше, зато вакуолей – меньше.
Вакуоли – это пузырьки цитоплазмы, в которые клетка обычно заключает подлежащие выводу в кровь продукты распада, чтобы после избавиться от них «с комфортом». Причем они почти полностью отсутствуют в клетках, которые ближе к самому просвету сосуда. А в тех, которые прилегают непосредственно к тканям мозга, их число близко к нормальному.
Все это может означать лишь одно: клетки мозговых капилляров четко сориентированы на выведение отходов работы клеток мозга, но функция снабжения у них сужена до минимума.
Однако всех уже перечисленных мер предосторожности природе показалось мало. Этот вывод напрашивается по факту того, что нейроны, в отличие от любых других клеток, не прилегают к поверхности капилляров напрямую. Везде прилегают, а в мозгу – нет.
Стенка каждого капилляра окружена промежуточным слоем еще одних особых клеток – астроцитов. Такое «звездное» название их объясняется наличием густой сети отростков – дендритов, которая придает астроцитам сходство с лучистой звездой. Слой этих клеток покрывает 85–90 % поверхности мозговых капилляров и называется нейроглией.
Нейроглия не относится ни к нервной ткани, ни к
эндотелиальной, однако выполняет посредническую функцию между той и другой сторонами. Именно составляющие ее астроциты захватывают необходимые элементы из кровотока. И они же передают их дальше, отросткам целевых клеток мозга. Причем астроциты снабжены собственной сигнальной системой. По ее «команде» проницаемость гематоэнцефалического барьера может повыситься или понизиться. Достигается такой эффект за счет снижения или повышения окислительной способности астроцитов и, как следствие, их электрического заряда. Это означает, что при снижении окислительного потенциала астроцит начинает притягивать из крови больше молекул – за счет разницы зарядов. Когда же он увеличен, барьер становится более плотным.Известно, что все элементы крови заряжены отрицательно, чтобы избежать их слипания. Клетки в основном тоже. Для притягивания веществ, «проплывающих» мимо вместе с кровотоком, они обычно используют не законы электричества, а парные этим веществам белки – рецепторы на поверхности собственных мембран. Притягивание элементов через внезапную смену заряда с отрицательного на положительный «умеет» использовать, помимо нейроглии, только сам эндотелий сосуда. Такое случается при травме – и случается для того, чтобы притянуть из кровотока тромбоциты к месту повреждения.
Для чего эндотелию нужен столь специфичный механизм, понятно: тромбоциты нельзя активизировать сразу все и повсеместно. Не то сердечно-сосудистую систему в разных местах одновременно перекроют сотни разнокалиберных тромбов. Вот во избежание этого меняют заряд только клетки, расположенные по краям разрыва стенки. А значит, только вокруг них и налипают активаторы свертывания тромбоциты. Нейроглия же аналогичным способом может, в зависимости от ситуации, регулировать степень преодолимости гематоэнцефалического барьера для различных компонентов.
Нетрудно догадаться при таких условиях, что гематоэнцефалический барьер, хоть он и является поистине гениальной естественной структурой, может сам стать источником неприятностей. Что еще, помимо токсинов, продуктов распада и антител, оказывается периодически в крови? Верно, лекарственные препараты. Антибиотики, онкотоксичные соединения для химиотерапии, различного рода диагностические маркеры, элементы заместительного, корригирующего и профилактического назначения… Многоуровневая защита не пропускает и их – она просто не настолько умна, чтобы различать подобные тонкости.
При этом практика показывает, что сквозь решето гематоэнцефалического барьера способны успешно проскользнуть некоторые инфекции. Столбняк, рассеянный склероз, вирусный энцефалит, менингит – вот далеко не полный перечень заболеваний органов центральной нервной системы, вызываемых различными возбудителями. Они лечатся, но по-прежнему очень тяжело, несмотря ни на какое совершенство современных антибиотиков. А «благодарить» за это следует именно защитные системы отделов ЦНС. Технически, гематоэнцефалический барьер можно отчасти обойти – выполнять впрыскивание назначенных препаратов непосредственно в полость черепа. Но у метода существует множество недостатков, делающих его неполноценным, существенно повышающих риск осложнений и снижающих его эффективность.
Во-первых, впрыскивание лекарственного средства в заполненные жидкостями полости, которые отделяют одну оболочку от другой, означает непременную трепанацию черепа. То есть радикальное хирургическое вмешательство, имеющее свой спектр последствий и несущее риск вторичного инфицирования пока не задетых участков мозга.
Во-вторых, сами мозговые оболочки, как уже упоминалось, обладают собственным набором «контраргументов» к любым попыткам проникнуть сквозь них. Таким образом, вскрытие черепной коробки и вливание под них лекарства совсем не гарантирует, что оно хоть сколько-нибудь заметно подействует на инфицированные участки. Оно имеет довольно основательные шансы просто «не добраться» до целевых клеток.