Чтение онлайн

ЖАНРЫ

Стандарты программирования на С++. 101 правило и рекомендация

Александреску Андрей

Шрифт:

set_cont(letters) += "a", "b";

Все в порядке, пока в один прекрасный день пользователь не напишет:

set_cont(letters) += getstr, getstr;

// порядок не определен при использовании

// перегруженного оператора ","

Если функция

getstr
получает, например, ввод пользователя и он введет строки
"с"
и
"d"
в указанном порядке, то в действительности строки могут оказаться внесены в любом порядке. Это может оказаться сюрпризом, поскольку при использовании
встроенного оператора
operator,
такой проблемы не возникает:

string s; s = getstr, getstr; // порядок строго определен

// при использовании

// встроенного оператора ","

Исключения

Исключение — специализированные библиотеки шаблонов для научных вычислений, которые в соответствии с дизайном переопределяют все операторы.

Ссылки

[Dewhurst03] §14 • [Meyers96] §7, §25 • [Murray93] §2.4.3 • [Stroustrup00] §6.2.2

31. Не пишите код, который зависит от порядка вычислений аргументов функции

Резюме

Порядок вычисления аргументов функции не определен, поэтому никогда не полагайтесь на то, что аргументы будут вычисляться в той или иной очередности.

Обсуждение

На начальных этапах развития языка C регистры процессора были драгоценным ресурсом и компиляторы решали трудные задачи эффективного их использования в сложных выражениях высокоуровневых языков. Для того чтобы позволить компилятору генерировать более быстрый код, создатели C дали распределителю регистров дополнительную степень свободы. При вызове функции порядок вычисления ее аргументов оставался неопределенным. Эта аргументация, вероятно, существенно менее важна в настоящее время, но главное, что порядок вычисления аргументов функций в C++ не определен и варьируется от компилятора к компилятору (см. также рекомендацию 30).

В связи с этим необдуманные действия программиста могут привести к большим неприятностям. Рассмотрим следующий код:

void Transmogrify(int, int);

int count = 5;

Transmogrify(++count, ++count); // Порядок вычислений

// неизвестен

Все, что мы можем сказать определенного, — это то, что при входе в тело функции

Transmogrify
значение переменной
count
будет равно 7 — но мы не можем сказать, какой аргумент будет равен 6, а какой — 7. Эта неопределенность остается и в гораздо менее очевидных случаях, таких как функции, модифицирующие свои аргументы (или некоторое глобальное состояние) в качестве побочного действия:

int Bump(int& x) { return ++x; }

Transmogrify(Bump(count), Bump(count)); // Результат

// неизвестен

Согласно рекомендации 10, следует в первую очередь избегать глобальных и совместно используемых переменных. Но даже если вы благополучно устраните их, некоторый другой код может этого не сделать. Например, некоторые стандартные функции имеют побочные действия (например,

strtok
, а также разные перегруженные операторы
operator<<
, принимающие в качестве аргумента
ostream
).

Рецепт

очень прост — использовать именованные объекты для того, чтобы обеспечить порядок вычислений (см. рекомендацию 13):

int bumped = ++count;

Transmogrify(bumped, ++count); // все в порядке

Ссылки

[Alexandrescu00c] • [Cline99] §31.03-05 • [Dewhurst03] §14-15 • [Meyers96] §9-10 • [Stroustrup00] §6.2.2, §14.4.1 • [Sutter00] §16 • [Sutter02] §20-21

Проектирование классов и наследование

Наиболее важный аспект разработки программного обеспечения — ясно понимать, что именно вы пытаетесь построить.

— Бьярн Страуструп (Bjarne Stroustrup)

Какого вида классы предпочитает разрабатывать и строить ваша команда? Почему?

Интересно, что большинство рекомендаций данного раздела вызваны в первую очередь вопросами зависимостей. Например, наследование — вторая по силе взаимосвязь, которую можно выразить в C++ (первая — отношение дружбы), и такую сильную связь надо использовать очень осторожно и продуманно.

В этом разделе мы сконцентрируем внимание на ключевых вопросах проектирования классов — как сделать это правильно, как не допустить ошибку, избежать ловушек, и в особенности — как управлять зависимостями.

В следующем разделе мы обратимся к Большой Четверке специальных функций — конструктору по умолчанию, копирующему конструктору, копирующему присваиванию и деструктору.

В этом разделе мы считаем самой важной рекомендацию 33 — "Предпочитайте минимальные классы монолитным".

32. Ясно представляйте, какой вид класса вы создаете

Резюме

Существует большое количество различных видов классов, и следует знать, какой именно класс вы создаете.

Обсуждение

Различные виды классов служат для различных целей и, таким образом, следуют различным правилам.

Классы-значения (например,

std::pair
,
std::vector
) моделируют встроенные типы. Эти классы обладают следующими свойствами.

• Имеют открытые деструктор, копирующий конструктор и присваивание с семантикой значения.

• Не имеют виртуальных функций (включая деструктор).

• Предназначены для использования в качестве конкретных классов, но не в качестве базовых (см. рекомендацию 35).

• Обычно размещаются в стеке или являются непосредственными членами другого класса.

Базовые классы представляют собой строительные блоки иерархии классов. Базовый класс обладает следующими свойствами.

• Имеет деструктор, который является либо открытым и виртуальным, либо защищенным и невиртуальным (см. рекомендацию 50), а также копирующий конструктор и оператор присваивания, не являющиеся открытыми (см. рекомендацию 53).

• Определяет интерфейс посредством виртуальных функций.

• Обычно объекты такого класса создаются динамически в куче как часть объекта производного класса и используются посредством (интеллектуальных) указателей.

Говоря упрощенно, классы свойств представляют собой шаблоны, которые несут информацию о типах. Класс свойств обладает следующими характеристиками.

• Содержит только операторы

typedef
и статические функции. Класс не имеет модифицируемого состояния или виртуальных функций.

Поделиться с друзьями: