Чтение онлайн

ЖАНРЫ

Стандарты программирования на С++. 101 правило и рекомендация

Александреску Андрей

Шрифт:

Преобразования в стиле С++ могут защитить корректность вашего кода в процессе эволюции системы. Пусть, например, у вас есть иерархия с корнем в

Employee
, и вам надо определить уникальный идентификатор
ID
для каждого объекта
Employee
. Вы можете определить ID как указатель на сам объект
Employee
. Указатели однозначно идентифицируют объекты, на которые указывают, и могут сравниваться на равенство друг другу — что в точности то, что нам и надо. Итак, запишем:

typedef Employee* EmployeeID;

Employee& Fetch(EmployeeID id) {

 return *id;

}

Пусть

вы кодируете часть системы с данным дизайном. Пусть позже вам требуется сохранять ваши записи в реляционной базе данных. Понятно, что сохранение указателей — не то, что вам требуется. В результате вы изменяете дизайн так, чтобы каждый объект имел уникальный целочисленный идентификатор. Тогда целочисленный идентификатор может храниться в базе данных, а хэш-таблица отображает идентификаторы на объекты
Employee
. Теперь
typedef
выглядит следующим образом:

typedef int EmployeeID;

Employee& Fetch( EmployeeID id ) {

 return employeeTable_.lookup(id);

}

Это корректный дизайн, и вы ожидаете, что любое неверное употребление

EmployeeID
должно привести к ошибке времени компиляции. Так и получается, за исключением следующего небольшого фрагмента:

void TooCoolToUseNewCasts(EmployeeID id) {

 Secretary* pSecretary = (Secretary*)id; // Плохо:

 // ... // преобразование в стиле С

}

При использовании старой инструкции

typedef
преобразование в стиле С выполняет
static_cast
, при новой будет выполнено
reinterpret_cast
с некоторым целым числом, что даст нам неопределенное поведение программы (см. рекомендацию 92).

Преобразования в стиле С++ проще искать в исходных текстах при помощи автоматического инструментария наподобие

grep
(но никакое регулярное выражение
grep
не позволит выловить синтаксис преобразования типов в стиле С). Поскольку преобразования очень опасны (в особенности
static_cast
для указателей и
reinterpret_cast
; см. рекомендацию 92), использование автоматизированного инструментария для их отслеживания — неплохая идея.

Ссылки

[Dewhurst03] §40 • [Meyers96] §2 • [Stroustrup00] §15.4.5 • [Sutter00] §44

96. Не применяйте

memcpy
или
memcmp
к не-POD типам

Резюме

Не работайте рентгеновским аппаратом (см. рекомендацию 91). Не используйте

memcpy
и
memcmp
для копирования или сравнения чего-либо структурированного более, чем обычная память.

Обсуждение

Функции

memcpy
и
memcmp
нарушают систему типов. Использовать
memcpy
для копирования объектов — это то же, что использовать ксерокс для копирования денег, а сравнивать объекты при помощи
memcmp
— то же, что сравнивать двух леопардов по количеству пятен. Инструменты и методы могут казаться подходящими для выполнения работы, но они слишком грубы для того, чтобы сделать ее правильно.

Объекты С++ предназначены для сокрытия данных (возможно, наиболее важный принцип в разработке программного обеспечения; см. рекомендацию 11). Объекты скрывают данные (см. рекомендацию 41) и предоставляют точные абстракции для копирования этих данных посредством конструкторов и операторов присваивания (см. рекомендации с 52 по 55). Пройтись по ним грубым инструментом типа

memcpy
— серьезное нарушение принципа сокрытия информации, которое
зачастую приводит к утечкам памяти и ресурсов (в лучшем случае), аварийному завершению программы (в случае похуже) или неопределенному поведению (в самом худшем случае). Например:

{

 // Создаем два int в памяти

 shared_ptr<int> p1(new int), p2(new int);

 memcpy(&p1, &p2, sizeof(p1)); // Так делать нельзя!!!

} // Утечка памяти: p2 никогда не удаляется

// повреждение памяти: p1 удаляется дважды

Неверное применение

memcpy
может влиять на такие фундаментальные свойства, как тип и сущность объекта. Компиляторы часто добавляют к полиморфным объектам скрытые данные (так называемый указатель на виртуальную таблицу), которые определяют сущность объекта во время выполнения программы. В случае множественного наследования в объекте содержится несколько таких таблиц, с различными смещениями внутри объекта, и большинство реализаций добавляют дополнительные внутренние указатели при виртуальном наследовании. При обычном использовании компилятор принимает меры для корректного управления всеми скрытыми полями; применение
memcpy
способно внести в этот механизм только хаос.

Аналогично, функция

memcmp
— неподходящий инструмент для сравнения чего-то более сложного, чем просто наборы битов. Иногда эта функция делает слишком мало (например, сравнение строк в стиле С — не то же, что и сравнение указателей, при помощи которых эти строки реализованы). А иногда, как это ни парадоксально,
memcmp
делает слишком много (например,
memcmp
может совершенно напрасно сравнивать байты, которые не являются частью состояния объекта, такие как заполнители, вставленные компилятором для выравнивания). В обоих случаях результат сравнения оказывается неверным.

Ссылки

[Dewhurst03] §50 • [Stroustrup94] §11.4.4

97. Не используйте объединения для преобразований

Резюме

Хитрость все равно остается ложью: объединения можно использовать для получения "преобразования типа без преобразования", записывая информацию в один член и считывая из другого. Однако это еще более опасно и менее предсказуемо, чем применение

reinterpret_cast
(см. рекомендацию 92).

Обсуждение

Не считывайте данные из поля объединения, если последняя запись была не в это же поле. Чтение из поля, отличного от поля, в которое производилась запись, имеет неопределенное поведение, и использование этого метода еще хуже, чем применение

reinterpret_cast
(см. рекомендацию 92); в последнем случае компилятор, как минимум, может предупредить программиста и не допустить "невозможной интерпретации" наподобие указателя в
char
. При использовании для этой цели объединения никакая интерпретация не приведет к ошибке времени компиляции (как и к надежному результату).

Рассмотрим фрагмент кода, предназначенного для сохранения значения одного типа (char*) и выборки битов этого значения в виде величины иного типа (

long
):

union {

 long intValue_;

 char* pointerValue_;

};

pointerValue_ = somePointer;

long int gotcha = intValue_;

Здесь есть две проблемы.

• Данный код требует слишком многого. Он полагается на то, что

sizeof(long)
и
sizeof(char*)
равны и что их битовые представления идентичны. Эти утверждения справедливы не для всех возможных реализаций (см. рекомендацию 91).

Поделиться с друзьями: