Там, где не слышно голоса
Шрифт:
Но у нас остаются еще два имени: Никола Тесла (1857–1943), гениальный изобретатель трансформатора высокой частоты. Он же придумал собственный оригинальный способ беспроволочной телеграфии. Необыкновенно талантливый изобретатель Тесла был сыном униатского [5] священника из маленькой сербской деревушки. Еще мальчишкой он мечтал об изобретениях, и мечты его сбылись. Более 700 важных изобретений связано с именем Теслы: динамо-машины, трансформаторы, индукторы, осцилляторы, генераторы… Им был разработан принцип вращения магнитного поля, позволивший осуществить конструкцию электромотора реверсивного движения. Всех изобретений
5
Униаты — последователи церковной унии, т. е. объединения православной церкви с католической под властью папы римского.
Тесла учился в Праге, в Будапеште и в Париже. В 1884 году он приехал в США, где сотрудничал с Томасом Эдисоном, а позднее с Вестингхаузом. Наконец он создал в Нью-Йорке собственную лабораторию. Тесла отличался невероятной трудоспособностью, он работал по 18–20 часов в сутки. Тесла так и не женился, у него не было своего дома, жил он в отелях. Он не ел мяса, не пил чая, кофе, алкоголя, не курил и верил, что доживет хотя бы до 140 лет. Но ему пришлось довольствоваться 85 годами жизни.
Что ж и этот возраст весьма почтенный!
В 1897 году Тесла начал устанавливать неподалеку от Нью-Йорка радиостанцию, которая передавала сигналы на расстояние 35 километров. Он опередил Маркони. Тесла спроектировал строительство самой мощной для того времени радиостанции. Но у него не хватило денег для осуществления своих замыслов.
Тесла внес в телеграфию и радиотелеграфию целый ряд усовершенствований. Все же он остался перед нами в долгу. В день своего 80-летия Никола Тесла получил награды от правительств Югославии и Чехословакии. После вручения наград изобретатель, словно между прочим, заявил, что он как раз открыл:
1. Метод выпрямления искривленного пространства.
2. Способ установления связи с остальными планетами путем посылки космических лучей на Луну и, наконец,
3. Вакуум — самый совершенный из всех существующих (якобы этот вакуум позволяет производить радий в неограниченном количестве, причем производство обходится необыкновенно дешево, цена одного килограмма… всего два с половиной доллара).
Не слишком ли много?
Жаль, что он не раскрыл тайны своих изобретений и ничего не написал о них.
И последний славный исследователь в области радиотехники — Эдвин Армстронг (1890–1954). Он «избавил» радиоприемники от кристаллического детектора и создал приспособление по устранению помех и улучшению качества звука.
Совсем недавно благодаря радиотелеграфии были спасены жители острова Тристан-да-Кунья, затерявшегося в океане.
На острове внезапно произошло извержение четырех вулканов, которые считались потухшими.
Тайна стратосферы
Итак, вы уже знаете, что 12-го декабря 1901 года в городке Сент-Джонс Маркони впервые услышал радиосигналы, посылаемые через Атлантический океан. Значит, профессор Томсон ошибался. То, что Земля имеет форму шара, оказывается, не является препятствием для электромагнитных волн. Они проникают на огромные расстояния, нужно только, чтобы передатчик был достаточно сильным, а приемник очень чувствительным. Но как объяснить это явление?
Ведь все волны, известные физикам, распространяются в пространстве прямолинейно.
Давайте вернемся на столетие назад, в те времена, когда впервые возник
этот вопрос.Случилось это восемнадцатого июля 1815 года. На болотистой равнине неподалеку от Ватерлоо встретились две армии: Наполеона и Веллингтона. Солдаты были измучены походом и недавними сражениями. Силы обеих армий были примерно равны. И вот император Наполеон приказал перейти в наступление. Французские кирасиры вступили в бой с шотландской кавалерией. Артиллеристы засыпали сомкнутые колонны неприятельских войск градом картечи.
Над полем боя гремели выстрелы. И хотя французские дивизии редели, солдаты истекали кровью, Наполеон был совершенно спокоен. Ведь неподалеку стояла тридцатитысячная армия маршала Груши. Конечно же, он слышит орудийные залпы и, наверное, уже спешит на помощь.
Сейчас его дивизии сметут остатки английской армии. Но император не дождался своего маршала. Вместо Груши на поле боя появился неприятель — генерал Блюхер с остатками своей армии. Еще вчера Блюхер был разбит Наполеоном, а теперь он помог англичанам в решающую минуту. Наполеон потерпел полное поражение, вынужден был подписать отречение от престола и отправиться в изгнание. Исход битвы под Ватерлоо решил судьбы Европы. До конца своих дней и Наполеон и его сторонники обвиняли Груши в измене. А Груши до самой смерти доказывал свою невинность. Маршал утверждал, что ни он, ни его офицеры не слышали залпов. Все только посмеялись над ним. Блюхер, находившийся гораздо дальше, услышал их и подоспел на помощь. А Груши, видимо, оглох. Весь мир спрашивал: «Сколько вам заплатили англичане за вашу глухоту, маршал?»
В поражении Наполеона под Ватерлоо были виноваты и звуковые волны, которые позволяют себе всякие «выходки».
Но маршал Груши не был предателем. Наполеон потерпел поражение под Ватерлоо из-за закона распространения звуковых волн. Только в то время этого никто не мог предположить. Ученые-физики вплотную подошли к этим проблемам только по окончании 1-й мировой войны. Ведь тогда представились неограниченные возможности для изучения слышимости артиллерийской стрельбы.
Иногда происходили странные вещи. Так, например, когда в октябре 1914 года немецкая артиллерия обстреливала Антверпен, за 200 километров от города от орудийных залпов дребезжали окна. А на расстоянии 50 километров от немецких батарей ничего не было слышно…
Я уже не буду больше разжигать ваше любопытство: физики установили, что высоко над землей на расстоянии 40–80 километров, в стратосфере звуковые волны отражаются и отправляются обратно на поверхность земли. Таким образом, звук переносится на расстоянии до 300 километров от своего источника.
Между источником звука и полосой слышимости, возникающей благодаря отражению радиоволн в стратосфере, может быть и «полоса тишины», такая большая, что в ней спокойно разместится целая армия с маршалом во главе…
Вскоре после того, как через Атлантический океан впервые были переданы радиосигналы, физики установили, что в стратосфере существует какое-то подобие зеркала, отражающего радиоволны обратно на Землю. (Это связано с повышением температуры молекул в разряженных слоях атмосферы). Иначе было трудно объяснить, почему радиоволны не ведут себя так, как должны были бы вести согласно утверждениям профессора Томсона. Почему они не уходят с поверхности земного шара в космос? Почему происходит хорошо знакомое вам замирание или прекращение радиоприема на коротких волнах? Специалисты называют это явление «федингом».