Чтение онлайн

ЖАНРЫ

Тайны пространства и времени
Шрифт:

Возможно, подобные рассуждения показались вам несколько искусственными и недостаточно убедительными. Но, поверьте, они проведены со всей необходимой в физике строгостью… Итак, точки, удаленные в настоящее время на расстояния, превосходящие расстояние «оптического горизонта», в самом начале «раздувания» Вселенной могли располагаться «по соседству» и обмениваться друг с другом физическими сигналами. Однако и среда в результате стремительного расширения тоже не была абсолютно однородной. Этому помешало возникновение небольших неоднородностей плотности, которые в дальнейшем стали центрами формирования скоплений галактик.

Так с помощью новой теории была преодолена одна из главных трудностей, с которой столкнулись авторы

«сценария» горячей расширяющейся Вселенной. Естественное объяснение получила и близость средней плотности вещества в современной Вселенной к критическому значению. Дело в том, что, согласно теории, плотность «ложного вакуума» в «распухающей» Вселенной в точности равна критической. Поэтому и плотность вещества, возникшего при распаде «ложного вакуума», также должна быть равна критической плотности.

Существует и еще одно весьма любопытное следствие стремительного «раздувания» Вселенной. Из теории вытекает, что после стадии «распухания» в областях, которые в начальный период достаточно далеко отстояли друг от друга, могли сформироваться различные физические условия. И между такими областями – «доменами», в процессе «раздувания» должны были возникнуть «доменные стенки».

В процессе дальнейшего расширения из таких областей образовались «мини-вселенные», а разделяющие их стенки отдалились очень далеко друг от друга, в частности, и от нас – за расстояние «оптического горизонта».

В этих достаточно удаленных друг от друга областях, различающихся своими физическими свойствами, возможно, по разному протекали и процессы свертывания многомерного пространства. В результате в различных «мини-вселенных» могли сформироваться пространства разной размерности.

Вполне логичные объяснения получают и в рамках теории «раздувающейся» Вселенной и некоторые другие свойства мироздания, не находившие истолкования в прежних теориях. Теперь, как всегда, слово за наблюдателями. Ибо только наблюдения могут подтвердить или опровергнуть теорию «раздувающейся» Вселенной.

Инфляционная теория не только помогла преодолеть трудности, возникшие в теории горячей расширяющейся Вселенной – из нее вытекал ряд важных следствий. В частности, выяснилось, что в процессе «раздувания» могли, как мы уже отмечали, сформироваться обособленные пространственные области – «домены», с различными физическими условиями, которые дали начало «мини-вселенным». Следовательно, наша Вселенная не единственная в мироздании, а лишь одна из множества вселенных, обладающих разными физическими свойствами.

И как бы ни развивалась инфляционная теория в будущем, ее появление – еще одно свидетельство теснейшей связи между микро- и макропроцессами…

Вселенная из… «ничего»

Идея, согласно которой «из ничего не родится ничто», возникла еще в V веке до н. э. в эпоху Парменидов. И оказалась одной из самых устойчивых идей, которая прошла через столетия и сохранялась в естествознании в неизменном виде почти до самого последнего времени! Еще всего какие-нибудь десять лет назад гипотезу о самопроизвольном возникновении в результате чисто физических процессов вещества и энергии из «ничего» большинство естествоиспытателей считало неприемлемой…

В невозможности возникновения «чего-либо» из «ничего» как будто убеждает нас и повседневный житейский опыт.

Мы привыкли к тому, что одни предметы или объекты всегда образуются из других предметов или объектов. И что из этого правила не существует исключений.

С другой стороны, известный современный английский астрофизик П. Девис утверждает, что возникновение «чего-то» из «ничего» не только в принципе возможно, но и реально происходит! Из чего, например, – ставит он вопрос, – возникают мысли, а также идеи? Мысли, без сомнения, существуют реально,

рассуждает Девис, а для их возникновения требуется непосредственное участие головного мозга. Однако мозг обеспечивает лишь реализацию мыслей, но не является их причиной. Сам по себе мозг порождает мысли не в большей степени, чем компьютер – вычисления. Мысли могут быть вызваны (порождены) другими мыслями, а также ощущениями или сведениями, то есть информацией, хранящейся в памяти или поступающей извне. Однако эти соображения не раскрывают природу самих мыслей.

Многие творческие люди говорят, что их произведения – результат неожиданного вдохновения. Таким образом, рождение картины, или стихотворения, или музыкального произведения фактически является примером рождения «чего-то» из «ничего». В пользу подобной точки зрения свидетельствуют высказывания ряда известных современных поэтов, писателей и композиторов. Так Андрей Вознесенский утверждает: «Чувствуешь эту связь, словно кто-то диктует тебе». Об этом же говорил и Владимир Солоухин: «Писал стихи – так мне всегда казалось, что под чью-то диктовку». Аналогичные мысли высказывал и выдающийся композитор А. Шнитке: «Музыка мною не пишется, а улавливается… Вроде как я имею дело не со своей работой, а переписываю чужую»…

Можно ли, однако, считать, что из «ничего» возникают физические объекты? В том числе наша Вселенная?

В принципе можно. Подобной точки зрения придерживаются такие известные современные физики и астрофизики как Алан Гут из Массачусетского технологического института (МТИ) в США, Сидней Коулмен из Гарвардского университета, Алекс Виленкин из университета Тафта. Они считают, что «ничто» – неустойчиво и Вселенная спонтанно «распустилась из «ничего».

Классическая физика рассматривала Вселенную как гигантский часовой механизм. Новая квантовая физика раз рушила эту лапласовскую схему. На атомном уровне материя и ее движение неопределенны и непредсказуемы. Разумеется, и атомный мир не свободен полностью от причинности, но она проявляется здесь неоднозначным образом. Главная особенность «квантового поведения», которая лежит в основе материи, – утрата строгих причинно-следственных связей.

Применима ли, однако, квантовая физика ко Вселенной? И если применима, то в каких пределах? Во всяком случае, ранняя Вселенная была ограничена весьма малыми размерами! Имеющиеся в распоряжении, современной физики и астрофизики данные говорят, что квантовые законы с момента начала расширения – в так называемую эру Планка – до 10– 43 с. играли определенную роль. И действие этих законов следует принимать во внимание вплоть до 10– 32 с. с момента начала инфляции.

Как считают некоторые теоретики, именно между этими двумя «эпохами» существовал момент времени, когда возникла наша Вселенная. По словам С. Ноуммена, именно в этот момент и совершился «квантовый скачок» из «ничего» во «время». Современное «пространство-время» есть не что иное, как реликт той эпохи.

Но откуда взялась энергия, необходимая для инфляционного расширения? Ведь существует закон сохранения энергии, а энергия начальной Вселенной была равна нулю. Но дело в том, что закон сохранения энергии в его обычной форме к инфляционной Вселенной неприменим. Сам процесс инфляционного расширения формирует возрастание энергии вакуума. И лишь квантовый распад ложного вакуума положил предел этому процессу.

Существует притча о мальчике, вытянувшем себя из болота за шнурки собственных ботинок. Самосоздающаяся Вселенная очень напоминает этого мальчика – она вытянула себя за «собственные шнурки». Этот процесс получил название «бутстрэпа». Благодаря своей природе Вселенная возбудила в себе всю энергию, которая была необходима для «создания» и «оживления» материи, а также инициировала породивший ее взрыв. Этому космическому «бутстрэпу» мы и обязаны своим существованием.

Поделиться с друзьями: