Тайны пространства и времени
Шрифт:
И поскольку все процессы, происходящие в окружающем нас мире, протекают в пространстве и во времени, именно эти области физической реальности выдвигаются в современном естествознании на первое место.
Принцип Коперника
Учение Коперника, в основе которого лежало выявление реальных, а не наблюдаемых с Земли движений небесных светил – Солнца, Луны и других планет, по сути дела открыло совершенно новый этап в развитии науки об окружающем мире. Его методологической основой стал принцип, который с полным правом можно назвать «Принципом Коперника», – мир не всегда таков, каким мы его непосредственно наблюдаем, то есть видимое – не всегда является действительным,
Но как узнать, действительно ли и в какой степени данные, полученные в результате научного исследования, отражают эту внутреннюю сущность? Какой меркой измерить их научное значение? Универсальный способ хорошо известен: критерием истинности любых научных гипотез и теорий является практика. Практика в самом широком значении этого слова – и опыт, и наблюдения, и практические применения полученных результатов.
Но каким образом применить этот критерий в тех случаях, когда новый результат только-только получен? Или, что нередко случается, лишь «на подходе»? Как оценить и соответствие истине, и перспективность? Как определить по достоинству место, которое он может занять в науке, то влияние, которое он способен оказать на ее дальнейшее развитие?
Особенно важно получить надежный, обоснованный ответ на эти вопросы в тех случаях, когда речь идет о фундаментальных исследованиях. От этого непосредственно зависит оптимальное планирование науки, успешное управление процессом научного исследования, распределение средств, а в конечном счете весомость вклада этих исследований в научно-технический прогресс.
Что говорит на этот счет история естествознания?
Долгое время главным, если не единственным способом такой оценки была дискуссия, спор, в ходе которого его участники старались выяснить, в какой степени новое знание отвечает действительности? Подобный способ установления истины нашел свое отражение и в знаменитых диалогах Платона, Д. Бруно и Г. Галилея. И хотя, начиная с основополагающих трудов Галилея, в естествознании утвердился более надежный экспериментальный метод проверки результатов научных исследований, тем не менее не утратили своего значения и научные дискуссии. Они и по сей день играют чрезвычайно важную роль в развитии науки, особенно в тех случаях, когда возникает возможность неоднозначного истолкования тех или иных фактов, или для построения достаточно обоснованной теории не хватает опытных или наблюдательных данных.
Особенно часто подобные ситуации складывались в астрономии, где во второй половине XX столетия число новых фактов, требовавших теоретического осмысления, стремительно возрастало, а методы их объяснения нередко противоречили друг другу.
Вспоминается, например, многолетняя дискуссия о природе лунных кольцевых гор – кратеров. Значительная часть астрономов, изучавших Луну, связывала их образование с вулканическими процессами. Другие же исследователи считали, что лунные кратеры возникли в результате метеоритной «бомбардировки». Спор продолжался на протяжении многих лет и немало способствовал развитию наших знаний об этом небесном теле, поскольку каждая из сторон стремилась получить новые данные о Луне, которые подтвердили бы обоснованность ее позиции.
Другим примером острой и во многом бескомпромиссной полемики, начавшейся в 1950-е годы, является дискуссия о направленности эволюционных процессов во Вселенной. Тогда схлестнулись две исследовательские программы. Согласно одной из них, которую обычно называют классической, эти процессы протекают от более разреженных состояний к более плотным, в частности, звезды образуются в результате конденсации диффузного вещества. Другая концепция, выдвинутая академиком В.А. Амбарцумяном и его школой и получившая название «Бюраканской», прямо противоположна. Ее сторонники исходят из того, что эволюционные процессы протекают от состояний более плотных
или даже сверхплотных – к более разреженным.В отличие от дискуссии о лунных кратерах, которая, несмотря на всю ее значимость для планетной астрономии, все же носила частный характер, дискуссия о направленности эволюционных процессов имеет фундаментальное значение для формирования наших представлений о Вселенной и построения научной картины мира.
Подобные дискуссии имеют огромное познавательное значение, они позволяют не только оценить степень достоверности данных, но и служат эффективным механизмом творческого поиска, приращения нового знания. В ходе подобных дискуссий не только выдвигаются новые идеи, не только рождается новое понимание, но и, что также очень важно, новое «знание о незнании», то есть новые проблемы, новые «опросы, требующие ответа.
В то же время история науки показывает, что итоги тех или иных этапов таких теоретических споров нельзя абсолютизировать и на этом основании объявлять одно из конкурирующих направлений несостоятельным. Нельзя даже в том случае, если в данный момент его поддерживает большинство научного сообщества.
Во-первых, еще Галилей справедливо отмечал, что в науке мнение одного может оказаться правильнее, чем мнение тысячи. И история науки это убедительно подтверждает. А во-вторых, главным судьей при столкновении различных взглядов и различных концепций является практика, как в виде непосредственных результатов астрономических и астрофизических наблюдений, так и в форме подтверждения новых теоретических результатов с помощью «старого» знания, достоверность которого уже доказана эмпирически.
Это действительно так. Например, упомянутая выше дискуссия о лунных кратерах временами выглядела довольно схоластически, поскольку в полемическом задоре одни и те же факты истолковывались сторонниками разных точек зрения в свою пользу, то есть прямо противоположным образом. И эта дискуссия закончилась только тогда, когда космические аппараты, побывавшие на Луне, доставили необходимую информацию, позволившую наконец сделать выбор и отдать предпочтение представлению о метеоритном, ударном происхождении лунных кольцевых образований.
В споре «классической» и «бюраканской» эволюционных концепций такой «решающей» информации пока нет. Поэтому вряд ли целесообразно, как это нередко делается, полностью игнорировать «бюраканскую» концепцию на том основании, что в настоящее время большинство астрономов придерживается «классической» гипотезы.
Тем более что опыт той же дискуссии о лунных кратерах показал и другое: хотя восторжествовала ударная гипотеза, все же оказалось, что вулканические явления в определенную эпоху на Луне происходили и оставили на ее поверхности весьма существенные следы.
Возникает вопрос: не слишком ли категорично в пылу полемики поступают участники «эволюционной» дискуссии, полностью отбрасывая противоположную точку зрения? Ведь нельзя заранее полностью исключить, что в бесконечно разнообразной Вселенной при одних условиях космические объекты формируются в результате распада, а при других – в результате конденсации…
Разумеется, было бы идеально располагать таким способом оценки, с помощью которого можно было бы сразу определять, в какой мере различные открытия, предположения и теории отвечают истинному положению вещей и какое влияние они способны оказать на дальнейшее развитие науки. Но пока это только мечты. И скорее всего вообще несбыточные.
Между тем на практике используются различные методы. С максимальной точностью можно оценить значение тех изысканий, которые почти сразу же могут использоваться в производстве. С фундаментальными же исследованиями, которые могут оказать существенное влияние на научно-технический прогресс лишь в будущем, дело обстоит значительно сложнее. Говорят, что нет ничего практичнее хорошей теории. Однако чаще всего ее «практичность» заранее отчетливо не просматривается.
Применяются, например, экспертные опросы. Делаются попытки оценить воздействие той или иной научной работы на развитие науки по числу ссылок на нее в трудах других исследователей. Однако все эти и другие подобные способы в силу целого ряда причин дают лишь весьма приблизительные результаты…