TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security)
Шрифт:
10.13.3 Алгоритм Нейгла
Отправитель должен независимо от получателя исключить пересылку очень коротких сегментов, аккумулируя данные перед отправлением. Алгоритм Нейгла (Nagle) реализует очень простую идею, позволяющую снизить количество пересылаемых по сети коротких датаграмм.
Алгоритм рекомендует задержать пересылку данных (и их выталкивание) на время ожидания ACK от ранее переданных данных. Аккумулируемые данные пересылаются после получения ACK на ранее отправленную порцию информации, либо после получения для отправки данных в размере полного сегмента или по завершении тайм-аута. Этот алгоритм не следует применять для приложений реального времени, которые должны отправлять данные как можно быстрее.
10.13.4 Задержанный ACK
Еще одним механизмом
■ Можно подтвердить прием нескольких сегментов одним ACK.
■ Принимающее приложение способно получить некоторый объем данных в пределах интервала тайм-аута, т.е. в ACK может попасть выходной заголовок, и не потребуется формирование отдельного сообщения.
С целью исключения задержек при пересылке потока полноразмерных сегментов (например, при обмене файлами), ACK должен отсылаться, по крайней мере, для каждого второго полного сегмента.
Многие реализации используют тайм-аут в 200 мс. Но задержанный ACK не снижает скорость обмена. При поступлении короткого сегмента во входном буфере остается еще достаточно свободного места для получения новых данных, а отправитель может продолжить пересылку (кроме того, повторная пересылка обычно выполняется гораздо медленнее). Если же поступает целый сегмент, нужно в ту же секунду ответить на него сообщением ACK.
10.13.5 Тайм-аут повторной пересылки
После отправки сегмента TCP устанавливает таймер и отслеживает поступление ACK. Если ACK не получен в течение периода тайм-аута, TCP выполняет повторную пересылку сегмента (ретрансляцию). Однако каким должен быть период тайм-аута?
Если он слишком короткий, отправитель заполнит сеть пересылкой ненужных сегментов, дублирующих уже отправленную информацию. Слишком же большой тайм-аут будет препятствовать быстрому исправлению действительно разрушенных при пересылке сегментов, что снизит пропускную способность.
Как выбрать правильный промежуток для тайм-аута? Значение, пригодное для высокоскоростной локальной сети, не подойдет для удаленного соединения со множеством попаданий. Значит, принцип "одно значение для любых условий" явно непригоден. Более того, даже для существующего конкретного соединения могут измениться сетевые условия, а задержки — увеличиться или снизиться.
Алгоритмы Джекобсона, Керна и Партриджа (описанные в статьях Congestion Avoidance and Control, Van Jacobson, и Improving Round-Trip Time Estimates in Reliable Transport Protocols, Karn и Partridge) позволяют адаптировать TCP к изменению сетевых условий. Эти алгоритмы рекомендованы к использованию в новых реализациях. Мы кратко рассмотрим их ниже.
Здравый смысл подсказывает, что наилучшей основой оценки правильного времени тайм-аута для конкретного соединения может быть отслеживание времени цикла (round-trip time) как промежутка между отправкой данных и получением подтверждения об их приеме.
Хорошие решения для следующих величин можно получить на основе элементарных статистических сведений (см. рис. 10.19), которые помогут вычислить время тайм-аута. Однако не нужно полагаться на усредненные величины, поскольку более половины оценок будет больше, чем среднестатистическая величина. Рассмотрев пару отклонений, можно получить более правильные оценки, учитывающие нормальное распределение и снижающие слишком долгое время ожидания повторной пересылки.
Рис. 10.19. Распределение значений времени цикла
Нет необходимости в большом объеме вычислений для получения формальных математических оценок отклонений. Можно использовать достаточно грубые оценки на основе абсолютной величины разницы между последним значением и среднестатистической оценкой:
Последнее отклонение = | Последний цикл - Средняя величина |
Для вычисления правильного значения тайм-аута нужно учитывать еще один фактор — изменение времени цикла из-за текущих сетевых условий. Происходившее в сети в последнюю минуту более важно, чем
то, что было час назад.Предположим, что вычисляется среднее значение цикла для очень длинного по времени сеанса. Пусть вначале сеть была мало загружена, и мы определили 1000 небольших значений, однако далее произошло увеличение трафика с существенным увеличением времени задержки.
Например, если 1000 значений дали среднестатистическую величину в 170 единиц, но далее были замерены 50 значений со средним в 282, то текущее среднее будет:
170×1000/1050 + 282×50/1050 = 175
Более резонной будет величина сглаженного времени цикла (Smoothed Round-Trip Time — SRTT), которая учитывает приоритет более поздних значений:
Новое SRTT = (1 – α)×(старое SRTT) + α×Последнее значение цикла
Значение α находится между 0 и 1. Увеличение а приводит к большему влиянию текущего времени цикла на сглаженное среднее значение. Поскольку компьютеры быстро могут выполнять деление на степени числа 2, сдвигая двоичные числа направо, для α всегда выбирается значение (1/2)n (обычно 1/8), поэтому:
Новое SRTT = 7/8×старое SRTT + 1/8×Последнее время цикла
В таблице 10.2 показано, как формула для SRTT подстраивается под текущее значение SRTT в 230 единиц, когда изменение в сетевых условиях приводит к последовательному увеличению времени цикла (при условии, что не наступает тайм-аут). Значения в столбце 3 используются как значения столбца 1 для следующей строки таблицы (т.е. как старое SRTT).
Таблица 10.2 Вычисление сглаженного времени цикла
Старое SRTT | Самое последнее RTT | (7/8)×(старое SRTT) + (1/8)×(RTT) |
---|---|---|
230.00 | 294 | 238.00 |
238.00 | 264 | 241.25 |
241.25 | 340 | 253.59 |
253.59 | 246 | 252.64 |
252.64 | 201 | 246.19 |
246.19 | 340 | 257.92 |
257.92 | 272 | 259.68 |
259.68 | 311 | 266.10 |
266.10 | 282 | 268.09 |
268.09 | 246 | 265.33 |
265.33 | 304 | 270.16 |
270.16 | 308 | 274.89 |
274.89 | 230 | 269.28 |
269.28 | 328 | 276.62 |
276.62 | 266 | 275.29 |
275.29 | 257 | 273.00 |
273.00 | 305 | 277.00 |
Теперь возникает вопрос о выборе значения для тайм-аута повторной пересылки. Анализ величин времени цикла показывает существенное отклонение этих значений от текущей средней величины. Имеет смысл установить границу для величины отклонений (девиаций). Хорошие величины для тайм-аута повторной пересылки (в стандартах RFC эту величину именуют Retransmission TimeOut — RTO) дает следующая формула с ограничением сглаженного отклонения (SDEV):
Т = Тайм-аут повторной пересылки = SRTT + 2×SDEV