Чтение онлайн

ЖАНРЫ

Тени разума. В поисках науки о сознании
Шрифт:

Ввиду вышесказанного можно подумать, что суперпозиции и комплексные весовые коэффициенты не играют сколько-нибудь эффективной физической роли, поскольку эволюция отдельных состояний во времени происходит так, словно других состояний тут вовсе нет. Это заблуждение. Проиллюстрируем на примере, что может произойти с такой системой в реальности.

Рассмотрим случай падения света на полусеребрёное зеркало, т.е. на полупрозрачное зеркало, отражающее ровно половину падающего на него света и беспрепятственно пропускающее все остальное. По квантовой теории, свет образуют частицы, называемые фотонами. Вполне естественно будет предположить, что половина фотонов из падающего на полусеребрёное зеркало потока отражается от его поверхности, а половина проходит зеркало насквозь. Не тут-то было! Согласно все той же квантовой теории, при столкновении с поверхностью зеркала каждый отдельныйфотон переходит в состояние суперпозицииотражения и пропускания. Если фотон находился до столкновения с зеркалом в состоянии | A, то после столкновения состояние фотона эволюционирует (в соответствии

с U) в состояние, которое можно записать в виде | B + i| C, где | B символизирует состояние, в котором фотон проникает сквозь зеркало, а | C — состояние, в котором фотон от зеркала отражается (см. рис. 5.11 ). Запишем эту эволюцию:

| A | B + i| C.

Коэффициент i появляется здесь вследствие результирующего фазового сдвига на четверть длины волны {68} , который возникает в таком зеркале между отраженным и прошедшим лучом света. (Для большей точности мне следовало бы включить в выражение зависящий от времени коэффициент осцилляции и выполнить полную нормировку, однако в настоящем обсуждении никакой необходимости в такой точности нет. В приводимых описаниях я выделяю лишь существенные для нас аспекты происходящего. Несколько подробнее о коэффициенте осцилляции мы поговорим в §5.11 , а вопроса о нормировке коснемся в §5.12 . Более полное описание можно найти в любой стандартной работе по квантовой теории {69} ; см. также НРК, с. 243-250.)

Рис. 5.11. Фотон в состоянии | A падает на полупрозрачное зеркало; в результате его состояние эволюционирует (согласно U) в суперпозицию | B + i| C.

В рамках классической картины поведения частицы мы, разумеется, предположим, что состояния | B и | C представляют собой альтернативные варианты возможногоповедения фотона. В квантовой же механике нам предлагается поверить, что фотон, находясь в такой чудесной комплексной суперпозиции, действительно совершает оба указанных действия одновременно. Чтобы убедиться в том, что здесь никоим образом не может идти речь о классических вероятностно-взвешенных альтернативах, разовьем наш пример еще немного и попытаемся снова свести вместе два частных состояния фотона (два фотонных луча). Для этого отразим сначала каждый луч от обычного, непрозрачного зеркала. В результате отражения {70} состояние | B фотона эволюционирует, согласно U, в некоторое другое состояние, скажем, i| D, тогда как состояние | C эволюционирует в i| E:

| B i| D и | C i| E.

Таким образом, совокупное состояние | B + i| C эволюционирует по Uследующим образом:

| B + i| C i| D + i( i| E) = i| D– | E

(поскольку i 2= —1). Вообразим далее, что эти два луча сходятся на четвертом зеркале, на этот раз снова полупрозрачном (как показано на рис. 5.12 ; предполагается, что длины всех лучей одинаковы, благодаря чему коэффициент осцилляции, которым я по-прежнему пренебрегаю, не играет никакой роли и здесь). Состояние | D эволюционирует при этом в комбинацию | G + i| F, где | G представляет состояние прохождения, a | F — состояние отражения. Аналогичным образом, | E эволюционирует в | F + i| G, поскольку в этом случае | F символизирует состояние прохождения, a | G — состояние отражения:

| D = | G + i| F и | E = | F + i| G.

Нетрудно убедиться (ввиду линейности эволюции U), что совокупное состояние i| D—| E эволюционирует следующим образом:

i| D—| E i(| G + i| F) - (| F + i| G) = i| G– | F– | Fi| G = —2| F.

(Коэффициент —2

физического смысла не имеет, поскольку, как уже упоминалось выше, при умножении совокупного физического состояния системы — в данном случае, | F — на некоторое отличное от нуля комплексное число физическая ситуация остается прежней.) Таким образом, мы видим, что возможность | G оказывается для фотона закрытой: после слияния двух лучей в один открытой остается единственновозможность | F. Этот любопытный результат обусловлен тем, что в физическом состоянии фотона в промежутке между его столкновениями с первым и последним зеркалом присутствуют обалуча одновременно. Мы говорим, что при этом происходит интерференциядвух лучей. Как следствие, получается, что альтернативные «миры» фотона между упомянутыми столкновениями не отделены в действительности один от другого, но могут друг на друга влиять посредством этих самых феноменов интерференции.

Рис. 5.12. Две составляющие состояния фотона сводятся вместе посредством двух непрозрачных зеркал; в точке слияния двух лучей установлено еще одно полупрозрачное зеркало. Лучи интерферируют таким образом, что результирующий луч приобретает состояние | F, тогда как детектор в точке Gфотона не регистрирует.

Важно помнить о том, что описанное свойство демонстрируют единичныефотоны. Следует понимать, что каждый отдельный фотон «пробует» оба открытых перед ним пути, оставаясь при этом все тем же однимфотоном. Он не расщепляется на два фотона на некоем промежуточном этапе, однако местоположение его определяется этаким странным комплексно-взвешенным сосуществованиемальтернатив, что как раз и характерно для квантовой теории.

5.8. Редукция R вектора состояния

В рассмотренном выше примере суперпозиция состояний фотона переходит в конечном счете в одно-единственное состояние. Представим, что в точках, обозначенных на рис. 5.12 буквами Fи G, размещены детекторы фотонов (фотоэлементы). Поскольку в данном конкретном примере фотон, миновав последнее зеркало, оказывается в состоянии | F (точнее, пропорциональном | F), а состояние | G никакого участия в его дальнейшей судьбе не принимает, детектор в точке Fзарегистрирует фотон, а детектор в точке Gне зарегистрирует ничего.

Что произойдет в более общем случае — например, если мы попытаемся подать на эти детекторы суперпозицию состояний вроде w| F + z| G? Детекторы выполнят измерениес целью определить, находится фотон в состоянии | F или же в состоянии | G. Квантовое измерение равносильно разглядыванию квантового события через увеличительное стекло и переводит событие с квантового на классический уровень. На квантовом уровне, при непрерывном воздействии U– эволюции, линейные суперпозиции сохраняются. Однако как только мы вытягиваем процесс на классический уровень, на котором события уже можно рассматривать как нечто действительнопроизошедшее, выясняется, что объекты больше не находятся в прежних странных комплексно-взвешенных комбинациях состояний. Выясняется(в нашем примере), что фотон регистрируется либодетектором в точке F, либодетектором в точке G, причем эти альтернативные варианты реализуются с определенной вероятностью. Квантовое состояние таинственным образом «перескакивает» от суперпозиции w| F + z| G к состоянию «либо | F, либо | G». Такой «скачок» в описании состояния системы (от суперпозиции состояний квантового уровня к состоянию, при котором реализуется лишь одна из возможных альтернатив классического уровня) называется редукцией вектора состояния, или коллапсом волновой функции; эту операцию я буду обозначать буквой R. Вопрос о том, следует ли рассматривать операцию Rкак реальный физический процесс либо как некую иллюзию или аппроксимацию, чрезвычайно для наших целей важен, и мы к нему еще обязательно вернемся. Тот факт, что нам приходится (во всяком случае, в математических описаниях) отбрасывать эволюцию Uи заменять ее совершенно отличной от нее процедурой R, есть фундаментальная X– загадка квантовой теории. На данном этапе, думаю, будет лучше, если мы не станем слишком углубляться в исследование этого парадокса, а будем (условно) рассматривать Rкак, в сущности, некий процесс, который просто сопутствует(в используемых нами математических описаниях, по крайней мере) процедуре «перемещения» события с квантового уровня на классический.

Как же вычисляются вероятности альтернативных результатов измерения на суперпозиции состояний? Для этого имеется одно весьма замечательное правило. Допустим, для измерения, определяющего окончательный выбор между альтернативными состояниями |F) и |G), как в приведенном выше примере, мы используем детекторы в точках, соответственно, F и G. Согласно упомянутому правилу, в случае суперпозиции состояний

w| F + z| G

Поделиться с друзьями: