Тени разума. В поисках науки о сознании
Шрифт:
То, что физики-люди, по большей части, пока еще ничего не знают о вышеупомянутой несуществующей теории, разумеется, не может заставить Природу отказаться от ее применения в своих биологических построениях. Она пользовалась принципами ньютоновской динамики задолго до Ньютона, электромагнитными феноменами задолго до Максвелла и квантовой механикой задолго до Планка, Эйнштейна, Бора, Гейзенберга, Шрёдингера и Дирака — в течение нескольких миллиардов лет! Лишь по причине свойственной нашему веку нелепой самонадеянности столь многие сегодня пребывают в уверенности, что нам известны все фундаментальные принципы, лежащие в основе каких угодно тонких биологических процессов. Когда какой-нибудь живой организм по счастливой случайности натыкается на такой тонкий процесс, он начинает его активно применять и, возможно, получает в результате некие преимущества перед своими менее удачливыми соседями. Тогда Природа благословляет этот организм вместе со всеми его потомками и позволяет новому тонкому физическому процессу сохраниться в последующих поколениях — посредством, например, такого мощного инструмента, как естественный отбор.
Когда появились первые эукариотические клетки-животные, они, должно быть, обнаружили, что наличие у них примитивных микротрубочек дает им огромные преимущества. В результате
Итак, мы допускаем, что в глобальной квантовой когерентности может участвовать вся совокупность микротрубочек в цитоскелетах большого семейства нейронов мозга — или, по крайней мере, что между состояниями различных микротрубочек в мозге наличествует достаточная квантовая сцепленность, — т.е. полностью классическоеописание коллективного поведения этих микротрубочек невозможно. Можно представить, что в микротрубочках возникают сложные «квантовые колебания» — там, где изоляции, обеспечиваемой самими трубками, достаточно для того, чтобы квантовая когерентность сохранялась хотя бы частично. Велик соблазн предположить, что «клеточноавтоматные» вычисления, которые, по мнению Хамероффа и его коллег, должны выполняться на поверхноститрубок, могут оказаться связанными с предполагаемыми квантовыми колебаниями внутритрубок (например, теми, что описаны в [ 79 ] или в [ 213 ]).
Заметим в этой связи, что частота, предсказанная Фрёлихом для коллективных квантовых колебаний (и подтвержденная наблюдениями Грундлера и Кайльмана [ 177 ]) — порядка 5 x 10 10Гц (т.е. 5 x 10 10колебаний в секунду), — практически совпадает с частотой, с которой, по Хамероффу, димеры тубулина в мнкротрубочковых клеточных автоматах «переключаются» из одного состояния в другое. Таким образом, если внутри микротрубочек и в самом деле работает фрёлихов механизм, то следует признать, что какая-то связь между этими двумя типами активности действительно имеется [56] .
56
Гораздо менее понятно, впрочем, существует ли сколько-нибудь прямая связь между упомянутыми сравнительно высокочастотными процессами и более привычной «волновой» активностью мозга (например, альфа-ритмом с частотой 8-12 ГЦ). Предполагается лишь, что такие низкие частоты могут возникать как «частоты биений», однако никакой связи пока не установлено. Особо примечательными в этой связи представляются не так давно обнаруженные колебания с частотой 35-75 Гц, ассоциирующиеся, по-видимому, с областями мозга, ответственными за сознательное внимание. Колебания эти, похоже, обладают какими-то загадочными нелокальными свойствами. (См. [ 107], [ 167], [ 64], [ 65] и [ 63]).
Впрочем, если бы такая связь была слишком сильной, то квантовый характер внутренних колебаний неизбежно означал бы, что и вычисления на поверхности самих трубок необходимо рассматривать квантовомеханически. Иначе говоря, на поверхности микротрубочек происходили бы самые настоящие квантовые вычисления(см. §7.3 )! Следует ли воспринимать такую возможность всерьез?
Трудность заключается в том, что для таких вычислений, по-видимому, необходимо, чтобы изменения конформаций димеров не возмущали сколько-нибудь заметным образом молекулы окружения. Здесь уместно вспомнить о том, что окружающая микротрубочку область заполнена водой в упорядоченномсостоянии, прочие же вещества в эту область не допускаются (см. [ 183 ], с. 172), что в совокупности может обеспечить некоторое квантовое экранирование. С другой стороны, микротрубочки соединены друг с другом «мостиками» MAP (см. §7.4 ) — причем по некоторым из них производится транспорт разных «посторонних» молекул, — и передача сигналов вдоль трубок (см. [ 183 ], с. 122) не может на эти мостики не воздействовать. Из этого последнего факта вполне недвусмысленно следует, что «вычисления», которыми занята трубка, могут и в самом деле возмутить окружение до такой степени, что их поневоле придется рассматривать классически. Интенсивность возмущения невелика ввиду малости перемещаемых масс (по OR– критерию, предложенному в §6.12 ), однако для того, чтобы вся система продолжала оставаться на квантовом уровне, необходимо, чтобы эти возмущения не проникали внутрь клетки и не распространялись далее, за ее пределы. На мой взгляд, неопределенности здесь (как в отношении реальной физической ситуации, так и в отношении применимости к ней критерия ORиз §6.12 ) остается вполне достаточно для того, чтобы помешать нам решить, уместен на данном этапе чисто классический подход или нет.
Как бы то ни было, предположим, в рамках настоящего рассуждения, что микротрубочковые вычисления следует рассматривать как существенно классические — в том смысле, что мы не ожидаем, что квантовые суперпозиции различных вычислений играют здесь сколько-нибудь значимую роль. С другой
стороны, допустим, что внутритрубок имеют место подлинно квантовые колебания некоего рода, причем между внутренними квантовыми и внешними классическими свойствами каждой трубки существует некая тонкая связь. Согласно такой картине, именно в этом тонком взаимодействии существенно проявляются неизвестные пока правила искомой новой теории OR. Внутренние квантовые «колебания» должны определенным образом воздействовать на внешние вычисления на трубках, однако в этом нет ничего нелогичного — учитывая те механизмы, которые, как мы предполагаем, ответственны за клеточноавтоматное поведение микротрубочек (слабые взаимодействия ван-дер-ваальсова типа между соседними димерами тубулина).В результате мы получаем картину некоего глобального квантового состояния, которое когерентно объединяет процессы внутри трубок и в котором участвует вся совокупность микротрубочек в той или иной обширной области мозга. Это состояние (которое вовсе не обязательно является просто «квантовым состоянием» в том традиционном смысле, который вкладывает в это понятие стандартный квантовый формализм) также некоторым образом воздействует на вычисления, выполняемые на микротрубочках, — для точного описания такого воздействия понадобится гипотетическая невычислимая OR– физика, которой у нас пока нет, но которая, я убежден, нам крайне необходима. «Вычислительная» активность конформационных изменений молекул тубулина управляет транспортом молекул вдоль наружной поверхности микротрубочек (см. рис. 7.13 ) и в конечном итоге воздействует на интенсивность синапса в его пре- и постсинаптических окончаниях. Таким образом, через посредство внешнихвычислений, когерентная квантовая организация внутри микротрубочек способна влиять на изменения в синаптических связях нейронного компьютера в текущий момент.
Рис. 7.13. Мостики MAP, помимо прочего, транспортируют крупные молекулы, тогда как меньшие молекулы перемещаются непосредственно вдоль микротрубочек.
Такая картина открывает простор для самых различных умозрительных построений. Например, можно отвести в ней некую роль нелокальности ЭПР-эффектов квантовой сцепленности. Определенную роль может играть и квантовая контрфактуальность. Представим, что нейронный компьютер готов выполнить некое вычисление, которое он в действительности не выполняет, но (как в случае задачи об испытании бомб) сам факт того, что он можетэто вычисление выполнить, вызывает эффект, отличный от того, который имел бы место, не будь у компьютера такой возможности. Таким образом, классическая «схема соединений» нейронного компьютера в любой момент времени может воздействовать на внутреннее цитоскелетное состояние, даже если возбуждение нейронов, активирующее данную конкретную «схему», в действительности не происходит. Можно еще поразмышлять над возможными аналогами такого рода феноменов в каких-либо более привычных умственных занятиях, каким мы то и дело предаемся, но мне почему-то кажется, что углубляться в обсуждение этих занятий здесь не стоит.
Согласно предлагаемой мною предварительной точке зрения, сознание есть проявление такого квантовосцепленного внутреннего состояния цитоскелета вкупе с участием этого состояния во взаимодействии ( OR) между процессами квантового и классического уровней. Компьютерообразная система нейронов, классическим образом соединенных друг с другом, непрерывно подвергается воздействию упомянутых цитоскелетных процессов, выступающих в роли проявлений «свободы воли» (что бы мы под этими словами ни понимали). Нейроны в этой системе выполняют функции, скорее, увеличительных стекол, посредством которых микроскопические цитоскелетные процессы «поднимаются» на уровень, на котором возможно воздействие на другие органы тела — например, на мышцы. Соответственно, нейронный уровень описания, к которому сводится модное нынче представление о мозге и разуме, является не более чем теньюцитоскелетных процессов более глубокого уровня — именно там, в глубине, находится физический фундамент разума, который мы столь упорно разыскиваем!
Эта картина, надо признать, не лишена некоторой умозрительности, однако она ни в чем не противоречит современным научным представлениям. В предыдущей главе мы убедились, что есть весьма веские причины (основанные на соображениях, не выходящих за рамки сегодняшней физики) полагать, что эта самая физика нуждается в серьезном пересмотре — для того, чтобы объяснять и описывать новые эффекты на том же уровне, на котором, по-видимому, происходят процессы в микротрубочках и, возможно, на границе цитоскелет/нейрон. Согласно представленным в первой части аргументам, для отыскания физического «обиталища» сознания необходимо «расчистить» в физике место для невычислимых физических процессов, единственная же приемлемая возможность такой расчистки заключается, как я показываю уже во второй части, в последовательном замещении редукции квантового состояния, обозначенной здесь буквой R, новой, объективной редукцией OR. Теперь мы должны ответить на вопрос, есть ли какие-нибудь чисто физическиеоснования ожидать, что процедура ORдействительно окажется в принципе невычислимой. Как вскоре выяснится, некоторые основания такого рода, учитывая сделанные в §6.12 предположения, действительно имеются.
7.8. Невычислимость в квантовой гравитации (1)
Ключевым требованием предшествующих рассуждений было то, что какой бы новый физический процесс ни пришел на смену вероятностной R– процедуре, применяемой в стандартной квантовой теории, его неотъемлемым свойством должна быть того или иного рода невычислимость. В §6.10 я показал, что этот новый физический процесс, OR, должен сочетать в себе принципы квантовой теории с принципами общей теории относительности Эйнштейна — т.е. представлять собой квантово- гравитационныйфеномен. Есть ли какие-нибудь свидетельства в пользу того, что невычислимость может оказаться существенным свойством той теории (какой бы она ни была), которая в конечном счете корректно объединит (надлежащим образом модифицировав) квантовую теорию и общую теорию относительности?