Чтение онлайн

ЖАНРЫ

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков
Шрифт:
empty-line/>

где D(t) – индикатор, определенный равенством (2.1), а r – параметр обучения, принимающий значения

меньшие 1.

Описанный выше алгоритм – это алгоритм градиентного спуска, который ищет параметры, чтобы минимизировать ошибку. Алгоритм итеративный. Формула итераций выводится следующим образом.

Введем риск

где суммирование идет по числу опытов (t номер опыта), при этом задано максимальное число опытов – Т.

Подставим вместо F формулу для персептрона, вычислим градиент по w. В результате мы получим указанную выше формулу перенастройки весов.

В процессе

обучения вычисляется ошибка ?(t)=D(t) – y(t).

Рисунок 2.8 – График изменения ошибки в процессе обучения нейросети

На рисунке 2.8 изображен график, показывающий, как меняется ошибка в ходе обучения сети и адаптации весов. На нем хорошо видно, что, начиная с некоторого шага, величина ?(t) равна нулю. Это означает, что персептрон обучен.

2.9. Дешифрирование объектов с помощью технологий искусственного интеллекта

При автоматизированном (автоматическом) дешифрировании изображений решаются задачи, которые по классификации Гонсалеса и Вудса делятся на задачи высокого и низкого уровня. К задачам высокого уровня относятся:

Конец ознакомительного фрагмента.

Поделиться с друзьями: