Чтение онлайн

ЖАНРЫ

Тепло в загородном доме
Шрифт:

В обычных отапливаемых домах при температуре 18–20° С допускается движение воздуха не более 0,1 м/с. Идеальное отопление должно было бы обеспечить такое вертикальное распределение воздуха в помещении, при котором температура на уровне высоты головы человека (приблизительно 1,7 м над полом) была бы примерно на 2° С ниже, чем на уровне 10 см над полом.

Значительное влияние на тепловой комфорт человека имеет температура ограничивающих плоскостей помещения, которая должна быть такой, чтобы разница температур стен и пола и температуры воздуха составляла не более 7° С, если человек отдыхает, и не более 10° С, если он работает.

Среднее

арифметическое эффективной температуры стен и температуры воздуха в интерьере (ti) можно определить как внутреннюю температуру в помещении. Эта температура измеряется сферическим термометром в центре помещения на высоте 1 м от пола, что соответствует центру тяжести стоящего человека. Значение измерения обычно является нормативным значением для проектирования технологии отопления в помещении.

Если влажность воздуха в помещении варьируется в диапазоне 35–70%, она не влияет на ощущение теплового комфорта человека, так как наличие водяного пара в воздухе также воздействует и на интенсивность испарения влаги с тела человека.

Остальные факторы, влияющие на тепловой комфорт в помещении, можно определить как принадлежащие к более широкому набору микроклиматических условий. К ним относятся:

– частицы пыли в воздухе;

– микроорганизмы или бактерии;

– газы, испарения и запахи разного типа;

– содержание ионов в воздухе.

Оценка потребления энергии

В прошлом оценка потребления энергии на отопление промышленных объектов в соответствующих технических стандартах не устанавливалась и даже не рекомендовалась. Однако предполагается, что в процессе согласования стандартов со стандартами стран ЕС критерии потребления тепла будут нормативно зафиксированы. Потребление энергии для отопления загородного дома оценивают на основе тепловой характеристики объекта qo.

Если действительно соотношение qo < = qo N, объекты удовлетворяют требованиям, в обратном случае они не соответствуют критериям.

Нормативная тепловая характеристика qoN для производственных промышленных объектов определяет объекты:

1) с очень легкой и легкой работой (табл. 4, строка А);

2) со средне тяжелой и тяжелой работой (табл. 4, строка Б).

Таблица 4. Тепловая характеристика qoN для производственных промышленных объектов

При расчете потребления тепла и тепловой характеристики зданий исходят из:

– тепловых потерь, данных стандартом для температуры воздуха внешней среды;

– характеристик смежных строений объекта.

При отоплении загородного дома учитываются тепловые потери объекта и только потом тепловые потери, связанные с инфильтрацией воздуха.

Тепловая характеристика рассчитывается по формуле:

qo = Qb (V. /\t) – 1 = Qb [V(ti – te)] – 1 (W.m – 3.K – 1),

где qo – тепловая характеристика здания (W.m – 3.K – 1);

Qb – тепловые потери здания (W);

/\t = (ti – te) – разница температур воздуха внутренней и внешней среды (К);

V – смежные помещения (т“”).

Классификация отопительных систем

Отопительная система должна удовлетворять широким комплексным требованиям, которые характеризуются:

энергетическими требованиями;

– экономической эффективностью;

– экологической обстановкой.

Отопительные системы по источнику тепла разделяются на:

– центральные (котельная на твердом, жидком, газовом топливе);

– децентрализованные (прямообогревающие устройства).

По дистрибьюции тепла отопительные системы делятся на:

– водяные (с горячей, теплой водой, низкотеплотные);

– паровые (среднего и низкого давления).

– тепловоздушные.

По способу передачи тепла отопительные системы бывают:

– конвекционными (отопительные элементы, тепловоздушные, проветривающие и климатизационные устройства);

– лучистыми.

Лучистые системы, в свою очередь, разделяются на следующие группы:

– светлые излучатели;

– темные;

– супертемные (излучатели, излучающие панели).

Выбор отопительной системы в значительной мере зависит от следующих факторов:

– выбор источника тепла и типа топлива;

– способ дистрибьюции тепла;

– характер отапливаемого помещения;

– способ передачи тепла в помещении.

Исходя из вышеприведенных требований, решение по использованию того или иного типа отопительных систем следует принимать, опираясь на потребности пользователя, что гарантирует высокое эксплуатационное качество в отапливаемом помещении.

Из всего сказанного выше можно сделать вывод, что вопреки необходимости решать эти проблемы комплексно доминирующим остается способ передачи тепла от отапливающего элемента или панели в отапливаемое пространство помещения с использованием конвекционной или лучистой системы.

Различный физический принцип передачи тепла и вещества, в случае конвекционного и лучистого отопления, предполагает, что при расчете потребности в тепле для отопления необходимо учитывать все физические законы, которые характеризуют передачу тепла конвекцией и излучением.

Конвекция

При использовании систем конвекционного отопления температура стен (tu) ниже температуры воздуха (tv). tu тем ниже tv, чем хуже теплоизоляционные свойства строительных материалов, использовавшихся при возведении дома, а также, чем ниже внешняя температура (te).

Общие тепловые потери объекта (Qс) равняются сумме тепловых потерь конструкцией (Qp) и тепловых потерь, связанных с вентиляцией (Qv):

Qс = Qp + Qv

Тепловые потери через стены определяются из основной тепловой потери (Qо) суммированием с коэффициентами по следующему соотношению:

QР = Qо.(1 + p1 + р2),

где р1 – коэффициент на компенсацию влияния холодных стен; р2 – коэффициент на ускорение нагрева.

Основная тепловая потеря конструкции объекта (Qo) рассчитывается как сумма тепловых потерь отдельных элементов конструкции:

Qo = E [kj • Sj • (ti – te)],

где kj – коэффициент прохождения тепла строительной конструкцией (W.m – 3.K – 1);

Sj – охлаждающаяся плоскость строительной конструкции (m2).

Тепловая потеря при натуральном проветривании рассчитывается по следующей формуле:

Qv = p. c. V. h – 1. (ti – te) : 3600,

где p – плотность воздуха (кg.m – 3);

c – специфическая тепловая емкость воздуха

(J.kg – 1.K – 1);

V – отапливаемый объем объекта (m3);

h – 1 – обмен воздуха в объекте за 1 час.

Поделиться с друзьями: