Термодинамика реальных процессов
Шрифт:
3. Возникновение внутренней силы в устройствах типа БМ-28.
При выборе соответствующих устройств я буду руководствоваться идеей, чтобы они отличались наибольшей простотой, наглядностью и доступностью. Это обстоятельство мне представляется крайне важным: я придаю особое значение тому, чтобы каждый желающий мог легко повторить эксперимент и убедиться в правильности выводов ОТ. Принципиальная схема механического БМ описана в книге [21, с.214]. Простейшим устройством подобного рода могут служить, как уже говорилось, два соударяющихся тела. Однако удар - это слишком грубый процесс, другой недостаток простого удара - его однократность.
Очевидно, что надо осуществить непрерывный круговой процесс изменения состояния движения тела, повторять его быстро и многократно, тогда получится безостановочно действующая внутренняя
Для конкретности предположим, что в зоне А тело имеет большую скорость ?А , в зоне С - малую ?С , а в зонах В и D - промежуточную ?В и ?D , ибо в зоне В тело тормозится, а в зоне D разгоняется и затем вновь приходит в исходное состояние А. Чтобы детально проанализировать силовую ситуацию в этих условиях, надо знать закон изменения скорости и интегрировать процесс по всей окружности. Однако для грубого качественного анализа вполне достаточно ограничиться рассмотрением лишь четырех наиболее характерных зон – А, В и С и D.
В зонах А и С скорости изменяются мало, поэтому ускорениями можно пренебречь и ориентироваться на первое равенство (237) и уравнение (329). Согласно этим уравнениям, центробежная сила тела в зоне А претерпевает максимальное хрональное уменьшение на величину РхА , а в зоне С - минимальное на величину РхС (рис. 17, б). Реакция опоры, не имеющей такой высокой скорости, как тело, испытывает пренебрежимо малые хрональные изменения. Поэтому в системе появляется за цикл (за один оборот) нескомпенсированная внутренняя (хрональная) сила Рхх = РхА - РхС , действующая со стороны опоры и направленная вверх.
Что касается зон В и D, то здесь на эффект скоростного ослабления центробежной силы накладывается также эффект, обусловленный ускорением. О последнем эффекте можно судить по второму равенству (237) и уравнению (328). При симметричном процессе скорости и ускорения в зонах В и D одинаковы по величине и противоположны по знакам, поэтому нескомпенсированные силы гасят друг друга (РхВ = - РхD ). В результате равнодействующая всех четырех сил за цикл остается равной Рхх .
На первый взгляд может показаться, что эта сила должна быть направлена вниз, то есть в сторону, где скорость и центробежная сила тела максимальны. Чтобы такого ощущения не возникало, надо не упускать из виду, что речь идет не о самой центробежной силе Рц , а только о ее хрональном уменьшении, избыточные же по отношению к хрональным силы благополучно гасятся внутри системы. При этом направление хрональной силы Рхх от направления вращения тела не зависит, оно целиком определяется относительной ориентацией максимальной и минимальной скоростей: сила Рхх всегда направлена в сторону минимальной скорости. Это важно помнить при обсуждении опытных данных.
На примере группы механических явлений (и БМ) полезно еще раз оговорить разницу, существующую между малой скоростью хода (малым ходом, малым отрезком) реального времени d?, входящей в уравнения (312), (315) и т.д., и ускорением (изменением, приращением) хода реального времени d?, входящим во второе равенство (237). Ускорение хода времени всегда обусловлено только изменением (приращением) хронала (второе равенство (237) и уравнение (328)), а скорость хода времени обычно рассматривается при постоянном значении хронала или приводится к нему, то есть к постоянному ходу реального или эталонного времени.
Описанный круговой процесс можно осуществить с помощью самых различных механизмов. Например, можно применить простейшее устройство БМ-28 (рис. 17, в), в котором шарики, ролики или стерженьки 1 катятся или скользят по кольцу 2, скрепленному с корпусом электродвигателя 7 [9, с.44]. Водилом служит диск 3 с отверстиями 4, насаженный на вал 5 двигателя. Ось кольца 2 смещена относительно оси двигателя на величину ?. При равномерном вращении двигателя в зоне А шарики катятся на большем радиусе, чем в зоне С, поэтому обладают большей скоростью. Для общего повышения скорости шариков путем уменьшения их трения о кольцо в качестве последнего целесообразно использовать соответствующий шариковый или роликовый подшипник, состоящий из подвижного кольца 2 и неподвижного 6.
Если бы хрональный эффект отсутствовал, тогда центробежная сила Рц изменялась бы симметрично относительно нулевой линии, изображенной на графике рис. 17, г горизонтальными штрихами, а все устройство
работало бы как обыкновенный вибратор. Наличие хронального эффекта приводит к появлению нескомпенсированной силы РхВ , направленной вверх, что равносильно смещению на графике нулевой линии вниз. Вообще, в данном устройстве сила РхВ всегда ориентирована в сторону, обратную эксцентриситету ? кольца, и при перемене направления вращения мотора не изменяется. Эту силу нетрудно измерить на достаточно чувствительных технических, аналитических или крутильных весах, она вызывает уменьшение веса работающего устройства. Величина силы зависит от числа оборотов, эксцентриситета, числа и массы шариков, радиуса кольца 2 и т.д. При нулевом эксцентриситете нескомпенсированная внутренняя сила обращается в нуль, так как в условиях равномерного движения шариков все силы - центробежные и внутренние - гасят друг друга [ТРП, стр.418-421].4. Устройства БМ-29 и БМ-30.
Необходимый круговой процесс можно осуществить также с помощью гироскопа, представляющего собой тело, вращающееся вокруг некоторой оси. Но с целью получения хронального эффекта гироскопу надо придать дополнительное перемещение (колебание) с переменной скоростью. При этом гироскоп можно использовать двумя различными способами - путем колебаний поперек (БМ-29) или вдоль (БМ-30) оси вращения, а сами колебания должны быть несимметричными: в одном направлении гироскоп надо перемещать с большой скоростью, а в обратном - с малой. В результате отдельные точки тела будут двигаться с переменной за цикл скоростью, то есть будет совершаться круговой процесс, и возникнет описанный выше нескомпенсированный силовой хрональный эффект.
Неодинаковое по скорости прямого и обратного движений контролируемое перемещение вращающегося гироскопа можно проще всего задать с помощью кривошипно-шатунного или эксцентрикового механизма, в котором ось вращения кривошипа (эксцентрика) смещена на величину ? относительно линии перемещения гироскопа (рис. 18, а). Гироскоп 7, заключенный в кожух 6, прикреплен к ползушке 4, которая двигается вправо и влево вдоль направляющих 3 и 5. Если кривошип 1 вращается в сторону, показанную стрелкой, то гироскоп перемещается вправо быстрее, чем влево. Разница в прямой и обратной скоростях тем выше, чем больше смещение ? и радиус R кривошипа и меньше длина 1 шатуна 2. При ? = 0 движение гироскопа является симметричным и обсуждаемый эффект не возникает: этот случай на рис. 18, б изображен штриховой линией, которая показывает смещение гироскопа от крайне правого положения (точка 0) до крайне левого (точка F) на величину 2R и затем вновь до конца направо (точка Е).
При ? ? 0 процесс описывается несимметричной сплошной линией, при этом несколько возрастает амплитуда колебаний и увеличивается длительность tл движения гироскопа влево по сравнению с длительностью tп его движения вправо, именно поэтому скорость справа больше, чем слева.
Если гироскоп колебать поперек оси вращения, то скорость точек А и С обода будет изменяться по величине, а точек В и D - по величине и направлению (рис. 18, в). На рисунке показана только большая скорость wв перемещения гироскопа вправо, от нее зависит количественная сторона эффекта, скорость вращения самого гироскопа ?В во всех точках А, В, С и D одинакова. Наибольший вклад в эффект дают точки А и С, движущиеся с различными суммарными скоростями, причем точка А обладает скоростью ?г + ?В , а точка С - скоростью ?г - ?В . Возникает нескомпенсированная за цикл колебания (оборот кривошипа) хрональная сила Рхх , направленная вверх, то есть поперек линии вибраций, в сторону зоны с наименьшей скоростью движения. При изменении направления вращения гироскопа сила Рхх изменяет свое направление на обратное, то же самое происходит при изменении направления вращения кривошипа.
Если гироскоп колебать вдоль оси вращения (рис. 18, г), то все его точки одновременно примут участие в дополнительном колебательном движении со скоростью ?В . В результате возникает нескомпенсированная хрональная сила Рхх , направленная вдоль оси, в сторону меньшей суммарной скорости движения точек гироскопа, а значит, и ползушки, то есть в сторону, противоположную максимальной скорости ?В , причем направление силы не зависит от направления вращения гироскопа, а целиком определяется направлением вращения кривошипа. При продольном колебании гироскопа эффект должен получиться заметно выше, чем при поперечном, так как в первом случае в процессе одновременно принимает участие большее количество метрического вещества [ТРП, стр.421-423].