Чтение онлайн

ЖАНРЫ

Термодинамика реальных процессов
Шрифт:

Частным случаем этого закона служит следующий известный из химии принцип смещения равновесия Ле Шателье (1884 г.): если система находится в состоянии равновесия, то при действии на нее сил, вызывающих смещение равновесия, она переходит в такое состояние, при котором эффект внешнего воздействия ослабляется, в результате наступает равновесие на новом уровне. Согласно ОТ, если известны химические потенциалы (силы), то все ясно и без принципа Ле Шателье; если не известны, тогда этот принцип может подсказать направление возможной реакции.

Обсуждаемый закон в кибернетике определяет явление управления с прямой связью, когда окружающая среда посредством целенаправленного воздействия на систему достигает определенного изменения ее свойств. Примером такой примитивной связи может служить управление двигателем внутреннего сгорания - путем открывания или закрывания дроссельной заслонки [18,

с.362; 20, с.272].

Указанный закон под именем принципа адаптации применяется также для анализа более сложных, в том числе биологических и т.д., явлений, однако надо помнить, что начинается он уже с третьей формы [1991, стр.480-482].

 2. Термодинамическая пара, или принцип самофункционирования.

Термодинамическая пара - это удивительно интересное и важное явление с колоссальным набором всевозможных свойств, превосходящим все то, что было сказано ранее о трех первых явлениях ряда; ей посвящена монография [21]. Термодинамическая пара в общем случае представляет собой замкнутую цепь, состоящую из двух или более разнородных проводников, места контакта (спаи) которых находятся при различных значениях какого-либо интенсиала. В спаях образуются неодинаковые скачки второго интенсиала, что вызывает круговую циркуляцию сопряженного со вторым интенсиалом вещества. Этот круговой процесс сопровождается поглощением теплоты диссипации в одном спае и выделением в другом. В проводниках -возникают различные линейные эффекты, обусловленные взаимным влиянием различных степеней свободы системы [21, с.16].

Например, в термоэлектрической паре, состоящей из двух разнородных металлов, под влиянием разности температур между спаями происходит круговая циркуляция носителей электрического вещества (эффект Зеебека). Этот процесс сопровождается поглощением теплоты диссипации в одном спае и выделением в другом (эффект Пельтье). В общем случае вдоль проводника при наличии на его концах разностей температур и потенциалов наблюдаются линейные эффекты Томсона, Джоуля-Ленца, упомянутый выше новый и т.д. Эффекту Томсона соответствует поглощение или выделение количества тепла диссипации, пропорциональное силе тока в первой степени, эффекту Джоуля-Ленца - выделение количества тепла, пропорциональное силе тока в квадрате, новому линейному - поглощение или выделение количества тепла, пропорциональное силе тока в кубе. Последний эффект обусловлен преодолением носителем квантов вермического и электрического веществ одновременно разностей температур и электрических потенциалов [18, с.296, 316; 21, с.309, 312].

В общем случае в термодинамической паре могут наблюдаться многочисленные другие эффекты, связанные с конкретными термодинамическими свойствами проводников и степеней свободы, которыми они располагают. Эти эффекты столь же специфичны, сколь специфичны сами степени свободы, поэтому они должны рассматриваться особо, применительно к каждой конкретной термодинамической паре. Например, в проводниках типа капилляров происходит разделение смеси газообразных и жидких веществ на простые составляющие, что широко применяется на практике. Мембраны и полупроницаемые перегородки - это типичные термодинамические пары, без которых не обходится ни один живой организм. В работе [21] описаны десятки других всевозможных пар: химикоэлектрические (гальванические элементы и электрические аккумуляторы), термофильтрационные, электрофильтрационные, диффузионно-фильтрационные, поверхностно-фильтрационные, магнитофильтра-ционные, вибрационно-фильтрационные, термоповерхностно-фильтрационные, термоэлектрофильтрационные, термоповерхностно-диффузионно-фильтрационные, термодиффузионные, электродиффузионные и т.д.

Очень экзотично выглядят упомянутые выше самофункционирующие термофазовые, термоэлектрические и хронально-химические пары (см. гл. XXIII и XXIV). Закон самофункционирования - это главный специфический закон явления термодинамической пары. С термодинамической пары начинаются также многие другие специфические законы, например определяющие круговой процесс, управление с обратной связью и т.д.

Суть кругового процесса заключается в том, что система, претерпевая ряд изменений своего состояния, вновь возвращается в исходное. При одной степени свободы никаких преобразований энергии в окружающей среде не наблюдается, так как изменения состояния в прямом и обратном направлениях происходят по одному и тому же пути. При двух и более степенях свободы пути прямого и обратного изменений состояния могут не совпадать между собой за счет изменения второй степени свободы. В результате происходят взаимные преобразования первой и второй форм

энергии. В термодинамической паре циркулирующее вещество испытывает именно такое круговое изменение своего состояния. Круговые процессы чрезвычайно широко распространены в природе и используются в технике. Например, по этому принципу работают все тепловые и иные двигатели. Круговые процессы были применены также при осуществлении устройств типа БМ (см. гл. XXI и XXII).

Закон управления с обратной связью рассматривается в кибернетике. Принципиальной особенностью кибернетических систем является наличие обратной связи между выходом из исполнительного органа и управляющим устройством. Например, в самофункционирующей термоэлектрической паре ПД-18, отапливающей помещение, изменение температуры окружающей среды приводит к изменению температуры внешнего спая. Эффект передается на внутренний спай, его температура и тепловой поток изменяются, круговой процесс возвращает информацию на внешний спай, его температура корректируется. Так происходит саморегулирование интенсивности теплообмена между средой и помещением. Другой пример: центробежный регулятор Уатта получает информацию о частоте вращения вала паровой машины и в соответствии с этим прикрывает или открывает заслонку на паропроводе, регулируя этим частоту [18, с.361; 21, с.274]. Чрезвычайно широко процессы управления с обратной связью представлены в живом организме, обществе и т.д.

Термодинамической паре присуще также огромное множество других, более частных специфических законов, но я их здесь рассматривать не буду [ТРП, стр.482-484].

 3. Самоорганизация, жизнь, общество, цивилизация, глобальная экология,

мегацивилизация, гигацивилизация.

Некоторые соображения по поводу всех этих сложных форм явлений высказаны в работах [18; 21, с.275-280]. В настоящее время нам неизвестны основные специфические законы, управляющие этими формами, поэтому мы не знаем главного. Мы можем только утверждать, опираясь на правило вхождения, что все они обязаны подчиняться рассмотренным выше законам для более простых явлений. Вместе с тем для нас должно быть совершенно ясно, что законов физики и химии далеко не достаточно для объяснения явлений жизни, ибо эти законы отражают свойства только начальных форм эволюционного

ряда (24).

Сейчас мы располагаем лишь отрывочными опытными фактами, раскрывающими отдельные стороны свойств сложных явлений. Однако некоторые из этих фактов, полученные с помощью нового определения понятий времени и пространства, с несомненностью свидетельствуют о том, что мир устроен совсем не так, как это нам представляется, и следовательно, требуются совсем другие подходы. Имеющиеся опытные данные, конечно, не решают проблему специфических законов сложных явлений, однако содержат важную информацию для размышлений и обобщений (см. гл. XXVI).

Результаты экспериментов приводят также к выводу о необходимости обратить внимание помимо качественной классификации (24) на количественную (20), особенно на ее более тонкие миры, где возможны свои формы жизни, которые способны решающим образом влиять на нашу цивилизацию. Этот вопрос кратко обсуждается в гл. XXVII, ему будет посвящена специальная монография.

В связи с этим новое звучание приобретает проблема эволюции, которую лишь весьма условно можно описать рядом (24). Тем не менее попытка систематизировать усложняющиеся явления и предложить какой-то теоретический аппарат для количественной оценки уровня их развития может представлять известный интерес (см. гл. XXVIII) [ТРП, стр.484-485].

Глава XXVI. Жизнь, цивилизация, экология...

1. Роль хронального явления в хронально-метрическом мире.

Уже говорилось, что хрональное явление чрезвычайно широко распространено в живой и неживой природе. В биологических объектах хрональное поле выполняет многочисленные и очень разнообразные и важные функции, связанные с регулированием жизненных процессов, воздействием на другие объекты, в том числе на микробов, передачей информации и т.п. Иными словами, все живое непременно, чрезвычайно изобретательно и широко пользуется хрональным явлением.

Поделиться с друзьями: