Ткань космоса. Пространство, время и текстура реальности
Шрифт:
Другой трудностью, с которой сталкивается предположение о «струнной структуре» пространства-времени, является то, что теория струн имеет и другие компоненты помимо струн (мы видели это в главе 13). Какую роль играют эти другие компоненты в фундаментальном строении пространства-времени? Этот вопрос становится особенно острым в модели мира на бране. Если трёхмерное пространство нашего опыта является 3-браной, то является ли сама эта брана неделимой или же она состоит из других компонентов теории? Например, состоят ли браны из струн или же как струны, так и браны — элементарные сущности? Или же следует допустить ещё одну возможность — что браны и струны состоят из ещё более тонких ингредиентов? Эти вопросы находятся на переднем крае текущих исследований, но поскольку в данной главе мы говорим о намёках и путеводных нитях дальнейших исследований, то позвольте мне рассказать об одной важной идее, привлёкшей большое внимание.
Ранее мы говорили о разнообразных бранах теории струн / M-теории: 1-бранах, 2-бранах, 3-бранах, 4-бранах и т. д. Хотя я и не подчёркивал это ранее, но в теории также существуют 0-браны— компоненты, не имеющие пространственных измерений подобно точечным частицам.
В действительности Том Бэнкс из университета Ратгерса, Вилли Фишлер из Техасского университета в Остине вместе с Леонардом Сасскиндом и Стивеном Шенкером (оба теперь в Стэнфорде), сформулировали версию теории струн / M-теории, в которой 0-браны являются фундаментальными ингредиентами, из которых могут состоять струны и прочие браны более высокой размерности. Их предположение, известное также как матричная теория(вот и ещё один вариант расшифровки буквы «M» в «M-теории»), вызвало лавину исследований, но математические трудности до сих пор препятствуют учёным разработать этот подход до конца. Тем не менее те вычисления, которые удалось провести в рамках этого подхода, подтверждают выдвинутое предположение. Если матричная теория верна, то это может означать, что всё (струны, браны и, возможно, даже само пространство и время) состоит из соответствующих агрегатов 0-бран. Это захватывающая перспектива, и исследователи проявляют осторожный оптимизм по поводу того, что в этом направлении в ближайшие несколько лет будет достигнут существенный прогресс.
До сих пор мы говорили о пути, которым в поисках ингредиентов пространства-времени следуют приверженцы теории струн, но, как я упомянул, есть и второй путь, которого придерживаются последователи теории петлевой квантовой гравитации — основного конкурента теории струн. Теория петлевой квантовой гравитации, появившаяся в середине 1980-х гг., является другим многообещающим кандидатом на объединение квантовой механики с общей теорией относительности. Я не буду подробно говорить об этой теории (если она вас интересует, прочтите превосходную книгу Ли Смолина «Три дороги к квантовой гравитации»), а вместо этого укажу на несколько основных моментов, относящихся к нашему обсуждению.
Теория струн и теория петлевой квантовой гравитации заявляют, что они могут достигнуть долгожданной цели создания квантовой теории гравитации, но сделают это совсем разными путями. Теория струн возникла из десятилетних поисков наиболее элементарных компонентов материи; в самом начале для сторонников теории струн гравитация была, в лучшем случае, вторичным вопросом. В противоположность этому, теория петлевой квантовой гравитации выросла на традициях общей теории относительности; для большинства приверженцев этого подхода гравитация всегда была в центре внимания. Если в одном предложении сформулировать различие подходов, то можно сказать, что теория струн идёт от малого (квантовая теория) к большому (гравитация), тогда как теория петлевой квантовой гравитации идёт от большого (гравитация) к малому (квантовая теория). {217} В самом деле, как об этом говорилось в главе 12, теория струн изначально разрабатывалась как квантовая теория сильного ядерного взаимодействия; и только позже, почти по счастливой случайности, было обнаружено, что эта теория в действительности включает гравитацию. Теория петлевой квантовой гравитации, напротив, исходит из общей теории относительности Эйнштейна и стремится включить квантовую механику.
Этот старт с противоположного конца пространственных масштабов отражается в путях развития обеих теорий. Основные достижения одной теории оказываются, до некоторой степени, изъянами другой. Например, теория струн объединяет всю материю и все силы, включая гравитацию (такое полное объединение ускользает от теории петлевой квантовой гравитации), описывая всё на языке вибрирующих струн. Гравитационная частица — гравитон — представляет собой всего лишь одну из колебательных мод струны, и, стало быть, эта теория естественным образом описывает, как эти элементарные сгустки гравитации движутся и взаимодействуют на уровне квантовой механики. Однако, как только что было отмечено, основной изъян текущих формулировок теории струн состоит в том, что они предполагают наличие «фонового пространства-времени», в котором струны движутся и вибрируют. В противоположность этому, основное (и впечатляющее) достижение теории петлевой квантовой гравитации состоит в том, что она непредполагает наличие «фонового пространства-времени». Теория петлевой квантовой гравитации является конструкцией, «независимой от фона». Однако получение обычного пространства и времени, как и достижение известных результатов общей теории относительности на крупных масштабах (что относительно легко получается в рамках существующих формулировок теории струн), когда за стартовую точку берётся необычная беспространственная/безвременная концепция, является далеко нетривиальной проблемой, которую пытаются решить исследователи. Более того, по сравнению с теорией струн, теория петлевой квантовой гравитации достигла гораздо меньших успехов в понимании динамики гравитонов.
Одной из возможностей для гармонизации является то, что последователи теории струн и приверженцы теории петлевой квантовой гравитации на самом деле строят одну и ту же теорию, но с совершенно разных стартовых позиций. На это указывает то обстоятельство, что обе теории включают петли, — в теории струн это петли, образуемые замкнутыми
струнами; в теории петлевой квантовой гравитации петли труднее описать без использования математики, но, грубо говоря, эти петли суть элементарные петли пространства. Эта возможность подкрепляется и тем фактом, что теории полностью согласуются друг с другом в тех немногих задачах (таких как определение энтропии чёрной дыры), которые можно решить в рамках обоих подходов. {218} И, что касается вопросов составляющих пространства-времени, обе теории предполагают существование некой атомизированной структуры. Мы уже видели намёки на это в рамках теории струн; аналогичные намёки в рамках теории петлевой квантовой гравитации ещё более настоятельные и даже более явные. Исследователи показали, что многочисленные петли теории петлевой квантовой гравитации могут соединяться (в чём-то подобно тому, как петли шерсти сплетаются в свитер), образуя структуры, которые на крупных масштабах выглядят приблизительно как области знакомого нам пространства-времени. Более того, исследователи подсчитали допустимое значение площади поверхности таких областей пространства. И оказалось, что площадь поверхности может составлять лишь целое число клеток площадью в планковскую единицу длины в квадрате, т. е. одна планковская клетка, две планковских клетки, 202 планковских клетки, но недопустимо дробное число клеток — подобно тому как может быть 1 электрон, 2 электрона, 202 электрона, но не может быть 1,6 электрона или любое дробное число электронов. Опять же, это является сильным аргументом в пользу того, что пространство, как и электроны, дискретно и состоит из неделимых элементов. {219}Если бы я рискнул сделать предсказание, то в качестве наиболее вероятного пути развития предположил бы, что «независимые от фона» методы, развитые в теории петлевой квантовой гравитации, будут приспособлены к теории струн, что даст дорогу для создания «независимой от фона» формулировки теории струн. И я полагаю, что от этой искры возгорится пламя третьей революции теории суперструн, в ходе которой будут разгаданы (я оптимист) многие из оставшихся глубоких тайн. На этом пути, вероятно, могла бы завершиться долгая история дебатов о пространстве-времени. С первых глав мы следили за «маятником мнений», раскачивающимся между релятивистским и абсолютистским взглядами на пространство, время и пространство-время. Мы спрашивали: представляет ли пространство собой нечто? Является ли чем-то пространство-время? И, следя за ходом мысли на протяжении нескольких столетий, мы знакомились с различными точками зрения. Я думаю, что экспериментально подтверждённый, «независимый от фона» союз между общей теорией относительности и квантовой механикой приведёт к удовлетворительному решению этой проблемы. Благодаря «независимости от фона» ингредиенты теории могут оказаться в определённой связи друг с другом, но при отсутствии пространства-времени, изначально введённого в теорию, не будет никакой «фоновой арены», в которую они были бы встроены. Имели бы значения только относительные связи — это решение было бы во многом в духе Лейбница и Маха. Затем, по мере того как ингредиенты теории (будь то струны, браны, петли или что-либо ещё, что будет открыто в ходе будущих исследований) соединяются, образуя известное нам крупномасштабное пространство-время (либо наше реальное пространство-время, либо гипотетические примеры, полезные для мысленных экспериментов), они снова начинают быть «чем-то», во многом подобным тому, что было в нашем раннем обсуждении общей теории относительности: в совершенно пустом, плоском, бесконечном пространстве-времени (один из полезных гипотетических примеров) поверхность воды во вращающемся ведре Ньютона примет вогнутую форму. Самое существенное то, что при таком описании почти совсем исчезнет различие между пространством-временем и более ощутимыми материальными элементами, поскольку и то, и другое будет возникать как совокупность более элементарных ингредиентов в фундаментально реляционной, беспространственной и безвременной теории. Вот как Лейбниц, Ньютон, Мах и Эйнштейн могли бы провозгласить общую победу.
Внутреннее и внешнее пространство
Спекуляции о будущем науки являются увлекательным и конструктивным опытом. Они помещают наши текущие исследования в более широкий контекст и выделяют высшие цели, для достижения которых мы неторопливо и вдумчиво работаем. Но когда такие рассуждения касаются будущего самого пространства-времени, они обретают почти мистический характер, поскольку мы рассматриваем участь тех самых вещей, которые господствуют над нашим ощущением реальности. Опять же, нет сомнений в том, что независимо от наших будущих открытий пространство и время будут продолжать обрамлять наш индивидуальный опыт; пространство и время, как и всё происходящее в жизни, останутся на своём месте. А то, что будет продолжать изменяться и, вероятно, радикально изменится, так это наше понимание предоставляемого ими каркаса, т. е. арены экспериментальной реальности. После столетий размышлений мы можем охарактеризовать пространство и время только как самых знакомых незнакомцев. Они невозмутимо держат путь через наши жизни, но умело скрывают своё фундаментальное строение от тех самых ощущений, которые они так наполняют и на которые они влияют.
За последнее столетие благодаря двум теориям относительности Эйнштейна и квантовой механике мы близко познакомились с некоторыми ранее скрытыми чертами пространства и времени. Замедление времени, относительность одновременности, альтернативное «нарезание на куски» пространства-времени, гравитация как искажение и искривление пространства и времени, вероятностная природа реальности и квантовое дальнодействие — даже самые лучше физики XIX го в. не ожидали, что всё это обнаружится буквально за углом. И всё же, это всё есть — подтверждённое как экспериментальными результатами, так и теорией.
В наш век мы столкнулись со множеством неожиданных идей:
• тёмная материя и тёмная энергия несомненно являются основными составляющими Вселенной;
• гравитационные волны — рябь ткани пространства-времени, — которые были предсказаны общей теорией относительности Эйнштейна и которые когда-нибудь смогут позволить нам заглянуть ещё дальше в прошлое, чем когда-либо ранее;
• океан Хиггса, который пронизывает всё пространство и который, возможно, поможет нам понять, как частицы обретают массу;