Ткань космоса. Пространство, время и текстура реальности
Шрифт:
Это в точности то, что происходит в стандартной теории Большого взрыва. В ней гравитация действует только как притягивающая сила, так что с самого начала она замедляет расширение пространства. Если что-либо замедляется, ему требуется больше времени, чтобы покрыть заданное расстояние. Например, представьте, что скакун Секретариат [64] стартовал стремительной иноходью и покрыл первую половину скаковой дистанции за две минуты, но, поскольку сегодня не его лучший день, он заметно сдал на второй половине и затратил на неё три минуты, чтобы добраться до финиша. При просмотре плёнки скачек в обратном направлении нам придётся отмотать плёнку более чем на половину её длины назад, чтобы увидеть, как Секретариат пересекает отметку половины дистанции (нам придётся передвинуться по всей пятиминутной плёнке назад к двухминутной отметке). Аналогично, поскольку в стандартной теории Большого взрыва гравитация замедляет расширение пространства, то из любой точки на космической плёнке нам придётся отмотать больше чем половину времени назад, чтобы уменьшить наполовину расстояние между двумя областями. И, как говорилось выше, это означает, что хотя области пространства и были ближе друг к другу в более ранние времена, но для них было более трудно — а не менее — оказать друг на друга влияние, и потому ещё более непонятно — а не менее, — что они как-то смогли уравнять температуру.
64
Секретариат —
Физики определяют космический горизонтобласти (или, для краткости, горизонт) как наиболее удалённые от области точки пространства, которые достаточно близки к данной области в том смысле, что они могут обмениваться с областью световыми сигналами за время, прошедшее с момента взрыва. Имеется аналогия с самыми удалёнными предметами, которые мы можем видеть на земной поверхности из некоторой определённой точки наблюдения. {138} Тогда проблема горизонтазаключается в том загадочном факте, что, как следует из наблюдений, области, горизонты которых всегда были разделены, — области, которые никогда не могли взаимодействовать, связываться друг с другом или любым способом оказывать друг на друга влияние, — каким-то образом имеют почти одинаковую температуру.
Проблема горизонта не означает, что стандартная модель Большого взрыва неверна, но она настоятельно требует объяснения. Инфляционная космология его даёт.
В инфляционной космологии имелось краткое мгновение, во время которого гравитация была отталкивающей, и это заставляло пространство расширяться всё быстрее и быстрее. Во время этой части фильма вам пришлось бы отмотать плёнку менее чем наполовину длины назад, чтобы вдвое уменьшить расстояние между областями. Представьте себе такой забег, в котором Секретариат покрыл первую половину дистанции за две минуты, а затем, поскольку это был главный забег его жизни, ускорился и промчался вторую половину всего за одну минуту. Вам придётся перемотать трёхминутную плёнку только к двухминутной отметке — менее чем наполовину назад, — чтобы увидеть его пересекающим отметку половины дистанции. Аналогично, ускоряющийся темп разделения любых двух областей пространства во время инфляционного расширения означает, что для уменьшения расстояния между ними вдвое потребуется отмотать космическую плёнку меньше — намного меньше, — чем на половину времени назад к началу. Следовательно, по мере того как мы двигаемся всё дальше назад во времени, для любых двух областей пространства становится всё легче оказать влияние друг на друга, поскольку имеется всё больше времени для их взаимодействия. Расчёты показывают, что если фаза инфляционного расширения заставила пространство расшириться как минимум в 10 30раз (а это то число, которое легко получается в частных реализациях инфляционного сценария), все области пространства, которые мы видим в настоящее время, — все области пространства, температуры которых мы можем измерить, — могли взаимодействовать так же легко, как кухня и смежная жилая комната, и поэтому легко достигли одинаковой температуры в самые ранние моменты истории Вселенной. {139} Иными словами, в самом начале пространство расширялось достаточно медленно, чтобы на большом пространстве установилась однородная температура, а затем в ходе интенсивного взрыва и всё более быстрого расширения Вселенная, начав с вялого старта, далеко разнесла близкие области с одинаковой температурой.
Вот как инфляционная космология объясняет столь загадочную однородность микроволнового фонового излучения, заполняющего пространство.
Инфляция и проблема плоскостности
Вторая проблема, решаемая инфляционной космологией, относится к форме пространства. В главе 8 мы выдвинули критерий симметрии, заключающийся в однородности пространства, и нашли три способа, как может быть изогнута ткань пространства. Обращаясь к нашей двумерной аналогии, можно выделить возможности положительной кривизны (форма, подобная поверхности шара), отрицательной кривизны (седловидная форма) и нулевой кривизны (форма, подобная бесконечной плоской поверхности стола или экрану видеоигры конечных размеров). На заре общей теории относительности физики поняли, что полное количество материи и энергии в каждом объёме пространства — плотность материи/энергии — определяет кривизну пространства. Если плотность материи/энергии высока, пространство свернётся в форму сферы; это значит, что будет положительная кривизна. Если плотность материи/энергии низка, пространство будет выворачиваться наподобие седла; это значит, будет отрицательная кривизна. А если, как отмечалось в предыдущей главе, плотность материи/энергии равняется очень специальной величине — критической плотности, примерно равной массе пяти атомов водорода (около 10 – 23г) в каждом кубическом метре, — пространство будет лежать точно между этими двумя крайними случаями и будет совершенно плоским; т. е. кривизны не будет.
Теперь давайте разберёмся, в чём кроется загадка пространства.
Уравнения общей теории относительности, которые лежат в основе стандартной модели Большого взрыва, показывают, что если плотность материи/энергии в начале была в точности равна критической плотности, то она останется равной критической плотности при расширении пространства. {140} Но если плотность материи/энергии была хотя бы чуть-чуть больше или чуть-чуть меньше, чем критическая плотность, последующее расширение уведёт её от критической плотности очень и очень далеко. Просто чтобы почувствовать числа, отметим, что если через секунду после Большого взрыва Вселенная чуть-чуть не дотягивала до критической плотности, составляя 99,99% от неё, то, как показывают расчёты, сегодня её плотность упала бы до величины 0,00000000001 от критической плотности. Эта ситуация напоминает скалолаза, который идёт по тонкому как бритва гребню с крутым обрывом с каждой стороны. Если его шаги направлены строго вдоль гребня, он сможет его пройти. Но малейшая ошибка, шаг, сделанный чуть левее или правее, приведёт к существенно иному исходу. (Рискуя перегрузить читателя аналогиями, вспоминаю в этой связи душевую в студенческом общежитии колледжа много лет назад: если удавалось установить кран абсолютно точно, можно было получить комфортную температуру воды. Но отклонение на йоту туда или сюда приводило либо к кипятку, либо к ледяной воде. Некоторые студенты просто совсем переставали принимать душ.)
Десятилетиями физики пытались измерить плотность материи/энергии во Вселенной. В 1980-е гг., хотя измерения были далеки от завершения, одно стало ясно: плотность материи/энергии Вселенной не превосходит критическую в тысячи и тысячи раз и не меньше её в тысячи и тысячи раз; соответственно, пространство не является сильно искривлённым, ни положительно, ни отрицательно. Это понимание представило стандартную модель Большого взрыва в неудобном свете. Отсюда следовало, что, для того чтобы стандартная модель Большого взрыва соответствовала наблюдениям, некоторый механизм — который, однако, никто не может объяснить или указать — должен был подстроить плотность материи/энергии ранней Вселенной экстраординарноточно к критической плотности. Например, расчёты показывают, что через одну секунду после Большого взрыва плотность материи/энергии Вселенной должна была находиться в пределах миллионной от миллионной доли процентаот
критической плотности; если бы плотность материи/энергии отклонилась от критической величины на любое значение, большее этого мизерного ограничения, то стандартная модель Большого взрыва предсказала бы на сегодня такую плотность материи/энергии, которая чрезвычайно отличалась бы от того, что мы наблюдаем. Поэтому в соответствии со стандартной моделью Большого взрыва ранняя Вселенная была сильно похожа на скалолаза, покачивающегося на чрезвычайно узком гребне. Ничтожное отклонение в условиях, существовавших во Вселенной миллиарды лет назад, должно было бы привести к сегодняшней Вселенной, сильно отличающейся от того, что показывают измерения астрономов. Это известно как проблема плоскостности.Хотя мы схватили основную идею, важно понять, в каком смысле проблема плоскостности является проблемой. Проблема плоскостности ни коим образом не показывает, что стандартная модель Большого взрыва неверна. Убеждённый сторонник реагирует на проблему плоскостности пожатием плеч и лаконичной репликой: «Просто тогда так было», принимая тонко настроенное значение плотности материи/энергии ранней Вселенной — которое требует стандартная модель Большого взрыва, чтобы предсказания согласовывались с наблюдениями, — как необъяснимую данность. Но этот ответ вызывает отторжение у большинства физиков. Физики чувствуют, что теория очень неестественна, если её успехи зависят от чрезвычайно точной подстройки свойств, для которой не видно фундаментального объяснения. Без объяснения причин, почему плотность материи/энергии ранней Вселенной должна была бы быть так тонко настроена на требуемую величину, многие физики находят стандартную модель Большого взрыва слишком надуманной. Таким образом, проблема плоскостности высвечивает экстремальную чувствительность стандартной модели Большого взрыва к условиям в удалённом прошлом, о которых мы знаем очень мало; это показывает, что теория должна предполагать, какой точно была Вселенная, для того чтобы быть работоспособной.
Напротив, физикам нравятся теории, предсказания которых нечувствительны к значениям неизвестных величин, вроде того, как обстояли дела в далёком прошлом. Такие теории кажутся надёжными и естественными, поскольку их предсказания не зависят от деталей, которые трудно или даже вообще невозможно определить напрямую. Именно такой теорией является инфляционная космология, и предлагаемое ею решение проблемы плоскостности иллюстрирует, почему это так.
Важное наблюдение заключается в том, что, в то время как притягивающая гравитация усугубляет любое отклонение от критической плотности материи/энергии, отталкивающая гравитация инфляционной теории делает наоборот: она уменьшаетлюбое отклонение от критической плотности. Чтобы почувствовать, почему это так, самое простое — использовать тесную связь между плотностью материи/энергии Вселенной и её кривизной для обоснования этого геометрически. В частности, заметим, что хотя форма ранней Вселенной и была существенно искривлённой, после инфляционного расширения та часть пространства, которая достаточно велика, чтобы включить в себя наблюдаемую сегодня Вселенную, выглядит очень близко к плоской. Это свойство геометрии, о котором мы все хорошо осведомлены: поверхность баскетбольного мяча, очевидно, кривая, но потребовались и время, и смелые мыслители, прежде чем все согласились, что поверхность Земли также искривлена. Причина состоит в том, что при прочих равных условиях чем большие размеры у чего-то, тем более плавно оно изгибается, и тем более плоским кажется кусок заданного размера на его поверхности. Если вы накинете штат Небраска на сферу только в несколько сотен миль в диаметре, как на рис. 10.4 а, он будет выглядеть искривлённым, но на земной поверхности, с чем согласны все жители Небраски, он выглядит плоским. Если вы расположите штат Небраска на сфере в миллиард раз больше Земли, он будет выглядеть ещё более плоским. В инфляционной космологии пространство растягивается настолько, что наблюдаемая Вселенная, тот кусок, который мы можем видеть, является всего лишь малым лоскутком в гигантском космосе. Подобно штату Небраска, расположенному на гигантской сфере, как на рис. 10.4 г, хотя вся Вселенная искривлена, наблюдаемаяВселенная будет очень близка к плоской. {141}
Рис. 10.4.Лоскут фиксированного размера, такой, как штат Небраска, кажется всё более и более плоским, когда он располагается на всё больших сферах. В этой аналогии сфера представляет всю Вселенную, тогда как штат Небраска представляет наблюдаемую Вселенную — ту часть Вселенной, которая находится внутри нашего космического горизонта
Это похоже на то, как если бы в ботинки скалолаза и в узкий гребень, по которому он идёт, были вставлены сильные, противоположно ориентированные магниты. Даже если его шаг попадает немного мимо нужного места, сильное притяжение между магнитами удерживает его ногу на гребне. Аналогично, даже если ранняя Вселенная заметно отклонялась от критической плотности материи/энергии и потому была далека от плоской, инфляционное расширение обеспечит, что та часть пространства, к которой мы имеем доступ, будет приведенак плоской форме, а плотность материи/энергии, к которой мы имеем доступ, будет приведенак критической величине.
Прогресс и предсказания
Решение инфляционной космологией проблемы горизонта и плоскостности представляет собой огромный прогресс. Для того чтобы космологическая эволюция привела к однородной Вселенной, плотность материи/энергии которой хотя бы отдалённо приближалась к тому, что мы сегодня наблюдаем, стандартная модель Большого взрыва требует точнейшей, необъяснимой, почти сверхъестественной настройки первоначальных условий. Такую настройку можно предположить, как считают ярые защитники стандартной модели Большого взрыва, но отсутствие её объяснения делает теорию неестественной. Напротив, безотносительно к детальным свойствам плотности материи/энергии ранней Вселенной, инфляционная космологическая эволюция предсказывает, что часть Вселенной, которую мы можем видеть, должна быть очень близка к плоской; т. е. она предсказывает, что плотность материи/энергии, которую мы наблюдаем, должна практически совпадать с критической плотностью. [65]
65
Альтернативное объяснение тонкой подстройки может заключаться в так называемом антропном принципе, который утверждает, что Вселенная такова, какова она есть, просто потому, что если бы она была иной, нас бы не было. Если бы с самого начала плотность Вселенной не была точно равна критической, жизнь никогда не возникла бы. Инфляционная космология решает эту частную проблему тонкой настройки параметров, но не решает проблему тонкой настройки вообще, так как точное равенство плотности Вселенной критической плотности — далеко не единственный пример тонкой настройки параметров. Другим примером является спектр масс элементарных частиц — будь он немного иным, не смогли бы возникнуть тяжёлые химические элементы и жизнь вместе с ними. Есть и некоторые другие подобные совпадения. Их по-прежнему приходится объяснять в рамках антропного принципа. (Прим. ред.)