Твиты о вселенной
Шрифт:
Кстати, Хаббл никогда не вернется на Землю. После того как умрет, он совершит управляемый спуск в атмосфере и утонет в океане.
Преемник Хаббла, Космический телескоп Джеймса Вебба, строится НАСА. Высокобюджетный проект на несколько лет.
Вебб имеет намного большее, 6,5-метровое, сегментированное зеркало. Над ним в космическом пространстве будет развернут большой зонт, защищающий его чувствительные зеркала/инструменты.
Вебб не выйдет на орбиту Земли. Вместо этого будет размещен в точке пространства в 1,5 млн км от Земли, в противоположном направлении от Солнца.
Причина: Вебб будет работать в инфракрасной (тепловой)
129. Как будут выглядеть телескопы будущего?
Они не будут очень сильно отличаться от сегодняшних телескопов. Будут больше. Намного, намного больше. По крайней мере, так они выглядят на чертежной доске.
При использовании вращающихся термостатов гигантские зеркала телескопа размером до 8,4 метра могут быть собраны в одном блоке. Для создания больших апертур необходимы соответствующие хитрости.
Один трюк — несколько зеркал на одной горе — будет использован для Гигантского Магелланова телескопа (GMT), который будет построен на Сьерро Лас Кампанас, Чили.
GMTбудет состоять из семи 8,4-метровых зеркал: шесть из них окружат центральное, седьмое. Вместе они обладают мощностью 24,5-метрового телескопа.
Вторая группа планируемых будущих телескопов будет иметь сегментированные зеркала, как Кек. Но если Кек имеет 36 сегментов, у этих гигантов будут сотни.
Тридцатиметровый Телескоп (Thirty Meter Telescope, ТМТ)является международным проектом, возглавляемым США и Канадой. Планируемое расположение — Мауна-Кеа, Гавайи, вблизи телескопа Кек.
ESO(Европейская южная обсерватория) планирует еще больший телескоп: 39,2 м в поперечнике — Сьерро Армазонес в северной части Чили, недалеко от Паранала.
ESOуже имеет Очень Большой Телескоп — так они называют этот (Европейский) Extremely Large Telescope( E-ELT). Да здравствует превосходная степень.
Будучи 39,2 м в ширину, E-ELT-зеркало будет обеспечивать площадь поверхности (и соответственно чувствительность) на 70 % больше, чем у Тридцатиметрового телескопа.
Все эти гигантские телескопы будущего планируется завершить в период 2018–2022. Если, конечно, они получат одобрение и соответствующее финансирование.
В далеком будущем, ESOможет построить гигантский 100-метровый телескоп. Да, у них уже есть и название для него: Необыкновенно Большой Телескоп ( Overwhelmingly Large Telescope).
130. Как работает нейтринный «телескоп»?
Нейтрино: субатомные частицы, возникающие в ядерных реакциях, генерирующих солнечный свет. Поднимите вверх большой палец: 100 млн млн таких частиц пронизывают его каждую секунду.
Определяющая характеристика нейтрино: асоциальные (некоммуникабельные). Не задерживаются атомами обычного вещества. Тем не менее они взаимодействуют — но крайне редко.
Трюк для обнаружения нейтрино: расположите большое количество атомов на их пути. Это повышает вероятность, что одна или две частицы будут остановлены.
Нейтринный «телескоп», подобный Super-Kamiokande [44] расположен глубоко внутри горы в японских Альпах. Это высотой с 10-этажный дом герметичная «кастрюля для запекания фасоли», наполненная водой.
Иногда нейтрино взаимодействует с протоном в молекуле воды.
Субатомные осколки в воде создают свет, эквивалентный сверхзвуковому хлопку.«Черенковское излучение» (подобно голубому свечению, замеченному в ядерных «водоемах») фиксируется световыми детектора-ми, которые расположены внутри «гигантской кастрюли для запекания фасоли».
44
SuperKamiokande(или Super-K) — нейтринный детектор, являющийся модернизированной моделью Kamiokande-II. Он размещен в японской лаборатории на глубине в 1000 метров в цинковой шахте Камиока, в 180 милях к северу от Токио. Строительство детектора производилось консорциумом американских и японских исследователей и было завершено в 1996 г. Детектор SuperKamiokandeпредставляет собой резервуар из нержавеющей стали высотой 42 м и диаметром 40 м, заполненный 50 тыс. т специально очищенной воды. На стенах резервуара размещены 11 146 фотоумножителей. Также детектор оснащен огромным количеством электроники, компьютеров, калибровочных устройств и оборудованием для очистки воды. Это чрезвычайно светочувствительные приборы: при попадании на их поверхность даже одного кванта света они генерируют электрический импульс, который затем обрабатывает специальная электронная система.
Нейтринные телескопы должны быть глубоко под землей для того, чтобы оградить их от «мюонов» из космических лучей, которые маскируются под след нейтрино.
Super-Kamiokande«сфотографировал» Солнце — ночью, глядя на Солнце не вверх, а вниз.
Нейтринные эксперименты в Японии и США зафиксировали нейтрино от Сверхновой 1987А — первое нейтрино, из когда-либо обнаруженных за пределами Солнечной системы.
Существует 3 типа, или «аромата», нейтрино. В нейтринной обсерватории Садбери (Sudbury Neutrino Observatory,Канада), подтвердилось, что на пути от Солнца нейтрино трансформируется из одного типа в другой.
Нейтринные «осцилляции» объяснили озадачивающую нехватку частиц, зарегистрированную новаторским детектором Рея Дэвиса, использовавшим «высоко очищенную жидкость». Дэвис получил Нобелевскую премию.
Новейший самый чувствительный нейтринный телескоп IceCube(Ледяной куб) использует в качестве детектора 1 км 3антарктического льда. Строительство завершено в начале 2011.
Большой интерес к нейтринным телескопам: мы знаем, как выглядит видимая Вселенная, но пока еще не знаем, как выглядит нейтринная Вселенная.
Наблюдаем Вселенную
131. Что такое свет?
Исаак Ньютон (1643–1727) считал, что свет состоит из крошечных частиц, движущихся прямолинейно. Теория описана в Оптике (Opticks),1704.
Христиан Гюйгенс (1629–1695) не согласился. Он считал, что свет — это волна, как звук. Теория описана в Трактате о Свете (Treatise on Light),1690.
В 1801 в Лондоне Томас Юнг продемонстрировал два световых луча, которые могут усилить или погасить друг друга (интерференция) — характерное свойство волны.
В XIX в. Майкл Фарадей и Джеймс Клерк Максвелл описали свет как электромагнитную волну, распространяющуюся в пространстве со скоростью в 300 000 км/с.
Несмотря на явную волновую природу света, Альберт Эйнштейн и Роберт Милликен высказали гипотезу, что свет состоит из сгустков, или квантов энергии (фотонов).
В квантовой физике свет одновременно имеет свойства и частицы, и волны. Энергия фотона связана с его длиной волны; фотоны интерферируют.